98%
921
2 minutes
20
Only female mosquitoes consume blood and transmit deadly human pathogens. Therefore, it is critical to remove females before conducting releases for genetic biocontrol interventions. Here we describe a robust sex-sorting approach termed SEPARATOR (Sexing Element Produced by Alternative RNA-splicing of A Transgenic Observable Reporter) that exploits sex-specific alternative splicing of an innocuous reporter to ensure exclusive dominant male-specific expression. Using SEPARATOR, we demonstrate reliable sex selection from larval and pupal stages in , and use a Complex Object Parametric Analyzer and Sorter (COPAS) to demonstrate scalable high-throughput sex-selection of first instar larvae. Additionally, we use this approach to sequence the transcriptomes of early larval males and females and find several genes that are sex-specifically expressed in males. SEPARATOR can simplify mass production of males for release programs and is designed to be cross-species portable and should be instrumental for genetic biocontrol interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312783 | PMC |
http://dx.doi.org/10.1101/2023.06.16.545348 | DOI Listing |
EMBO J
September 2025
Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
During a critical period of postnatal brain development, neural circuits undergo significant refinement coincident with widespread alternative splicing of hundreds of genes, which undergo altered splice site selection for the generation of isoforms essential for synaptic plasticity. Here, we reveal that neuronal activity-dependent phosphorylation of paxillin at its serine 119 (p-paxillin) acts as a molecular switch in the nucleus for the control of alternative splicing during this period. We show that following NMDA receptor activation, nuclear p-paxillin is recruited to nuclear speckles, where it interacts with splicing factors, such as U2AFs.
View Article and Find Full Text PDFPLoS Genet
September 2025
Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America.
The RbFox RNA binding proteins regulate alternative splicing of genes governing mammalian development and organ function. They bind to the RNA sequence (U)GCAUG with high affinity but also non-canonical secondary motifs in a concentration dependent manner. However, the hierarchical requirement of RbFox motifs, which are widespread in the genome, is still unclear.
View Article and Find Full Text PDFKaohsiung J Med Sci
September 2025
Department of Medical Oncology, Haikou People's Hospital, Haikou, Hainan, People's Republic of China.
Inhibition of cuproptosis contributes to the development of non-small cell lung cancer (NSCLC). The expression of RNA-binding motif protein 15 (RBM15) is upregulated in NSCLC. Nonetheless, its relationship with cuproptosis remains unclear.
View Article and Find Full Text PDFCancer Med
September 2025
The Key Laboratory of Tumor Stem Cell Research of Liaoning Province, Dalian Medical University, Dalian, China.
Background: Prostate cancer is one of the principal malignancies threatening human health, and the development of castration resistance often constitutes a major cause of treatment failure in its management.
Methods: To elucidate the potential association between programmed death-ligand 1 (PD-L1) and castration resistance in prostate cancer, we analyzed the expression levels of PD-L1 in both primary prostate cancer tissues and castration-resistant prostate cancer (CRPC) specimens as well as in corresponding cell lines by using western blots and immunohistochemistry. Then, we explored the specific mechanisms through transcriptomic sequencing technology.
Am J Physiol Cell Physiol
September 2025
Humboldt-University zu Berlin, Berlin, Germany.
Skeletal muscle atrophy and weakness are major contributors to morbidity, prolonged recovery, and long-term disability across a wide range of diseases. Atrophy is caused by breakdown of sarcomeric proteins resulting in loss of muscle mass and strength. Molecular mechanism underlying the onset of muscle atrophy and its progression have been analysed in patients, mice, and cell culture but the complementarity of these model systems remains to be explored.
View Article and Find Full Text PDF