Publications by authors named "Shi-Tong Tang"

Trivalent arsenicals, such as arsenite [As(III)] and methylarsenite [MAs(III)], are highly toxic and commonly found in anoxic environments. Similarly, antimony (Sb), a toxic metalloid present in the environment, triggers the activation of numerous genes in microorganisms to resist, transform, and efflux it. This study focuses on the arsZ' gene from the trivalent metalloids-resistant Ensifer adhaerens strain ST2 and its role in mitigating antimonite [Sb(III)] toxicity.

View Article and Find Full Text PDF

Methylated arsenicals, including highly toxic species, such as methylarsenite [MAs(III)], are pervasive in the environment. Certain microorganisms possess the ability to detoxify MAs(III) by ArsI-catalyzed demethylation. Here, we characterize a bifunctional enzyme encoded by the gene from sp.

View Article and Find Full Text PDF

Microbial oxidation of environmental antimonite (Sb(III)) to antimonate (Sb(V)) is an antimony (Sb) detoxification mechanism. ST2, a bacterial isolate from a Sb-contaminated paddy soil, oxidizes Sb(III) to Sb(V) under oxic conditions by an unknown mechanism. Genomic analysis of ST2 reveals a gene of unknown function in an arsenic resistance (ars) operon that we term .

View Article and Find Full Text PDF

Microbially mediated arsenic redox transformations are key for arsenic speciation and mobility in rice paddies. Whereas anaerobic anoxygenic photosynthesis coupled to arsenite (As(III)) oxidation has been widely examined in arsenic-replete ecosystems, it remains unknown whether this light-dependent process exists in paddy soils. Here, we isolated a phototrophic purple bacteria, Rhodobacter strain CZR27, from an arsenic-contaminated paddy soil and demonstrated its capacity to oxidize As(III) to arsenate (As(V)) using malate as a carbon source photosynthetically.

View Article and Find Full Text PDF

Methylarsenite [MAs(III)] is a highly toxic arsenical produced by some microbes as an antibiotic. In this study, we demonstrate that a PadR family transcriptional regulator, PadR , from Azospirillum halopraeferens strain Au 4 directly binds to the promoter region of the arsenic resistance (ars) operon (consisting of padR , arsV, and arsW) and represses transcription of arsV and arsW genes involved in MAs(III) resistance. Quantitative reverse transcriptase PCR and transcriptional reporter assays showed that transcription of the ars operon is induced strongly by MAs(III) and less strongly by arsenite and antimonite.

View Article and Find Full Text PDF