Publications by authors named "Shamik Dasgupta"

Hadal trenches, some of the Earth's least explored and understood environments, have long been proposed to harbour chemosynthesis-based communities. Despite increasing attention, actual documentation of such communities has been exceptionally rare. Here we report the discovery of the deepest and the most extensive chemosynthesis-based communities known to exist on Earth during an expedition to the Kuril-Kamchatka Trench and the western Aleutian Trench using the manned submersible Fendouzhe.

View Article and Find Full Text PDF

This article argues that extended school closures during the Covid-19 pandemic were a moral catastrophe. It focuses on closures in the United States of America and discusses their effect on the pandemic (or lack thereof), their harmful effects on children, and other morally relevant factors. It concludes by discussing how these closures came to pass and suggests that the root cause was structural, not individual: the relevant decision-makers were working in an institutional setting that stacked the deck heavily in favor of extended closures.

View Article and Find Full Text PDF

The hadal zone, mostly comprising of deep trenches and constituting of the deepest part of the world's oceans, represents the least explored habitat but one of the last frontiers on our planet. The present scientific understanding of the hadal environment is still relatively rudimentary, particularly in comparison with that of shallower marine environments. In the last 30 years, continuous efforts have been launched in deepening our knowledge regarding the ecology of the hadal trench.

View Article and Find Full Text PDF

Large plastic litter (as opposed to microplastics and plastic pellets) could adsorb organic pollutants and thus pose a serious threat to the marine environment. We report high levels of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) adsorbed to plastic litter sampled from depths of 1800-3100 m in the Xisha Trough region of the northern South China Sea (NSCS). ∑PCBs on plastics ranged from 126.

View Article and Find Full Text PDF

Perceptual decisions require the accumulation of sensory information to a response criterion. Most accounts of how the brain performs this process of temporal integration have focused on evolving patterns of spiking activity. We report that subthreshold changes in membrane voltage can represent accumulating evidence before a choice.

View Article and Find Full Text PDF

Genetically encoded tools for visualizing and manipulating neurons in vivo have led to significant advances in neuroscience, in large part because of the ability to target expression to specific cell populations of interest. Current methods enable targeting based on marker gene expression, development, anatomical projection pattern, synaptic connectivity, and recent activity as well as combinations of these factors. Here, we review these methods, focusing on issues of practical implementation as well as areas for future improvement.

View Article and Find Full Text PDF

Decisions take time if information gradually accumulates to a response threshold, but the neural mechanisms of integration and thresholding are unknown. We characterized a decision process in Drosophila that bears the behavioral signature of evidence accumulation. As stimulus contrast in trained odor discriminations decreased, reaction times increased and perceptual accuracy declined, in quantitative agreement with a drift-diffusion model.

View Article and Find Full Text PDF

Pressure is an important thermodynamic property of the ocean and the deep biosphere that affects microbial physiology and biochemistry. Here, we report on our investigation of the response of Gram-positive piezotolerant bacterium Sporosarcina sp. DSK25 to hydrostatic pressure.

View Article and Find Full Text PDF

Recent studies in mammals have documented the neural expression and mobility of retrotransposons and have suggested that neural genomes are diverse mosaics. We found that transposition occurs among memory-relevant neurons in the Drosophila brain. Cell type-specific gene expression profiling revealed that transposon expression is more abundant in mushroom body (MB) αβ neurons than in neighboring MB neurons.

View Article and Find Full Text PDF

Adrenergic signaling has important roles in synaptic plasticity and metaplasticity. However, the underlying mechanisms of these functions remain poorly understood. We investigated the role of octopamine, the invertebrate counterpart of adrenaline and noradrenaline, in synaptic and behavioral plasticity in Drosophila.

View Article and Find Full Text PDF

Behavioral expression of food-associated memory in fruit flies is constrained by satiety and promoted by hunger, suggesting an influence of motivational state. Here, we identify a neural mechanism that integrates the internal state of hunger and appetitive memory. We show that stimulation of neurons that express neuropeptide F (dNPF), an ortholog of mammalian NPY, mimics food deprivation and promotes memory performance in satiated flies.

View Article and Find Full Text PDF

A biological understanding of memory remains one of the great quests of neuroscience. For over 30 years the fruit fly Drosophila melanogaster has primarily been viewed as an excellent vehicle to find 'memory genes'. However, the recent advent of sophisticated genetic tools to manipulate neural activity has meant that these genes can now be viewed within the context of functioning neural circuits.

View Article and Find Full Text PDF

A unifying feature of mammalian and insect olfactory systems is that olfactory sensory neurons (OSNs) expressing the same unique odorant-receptor gene converge onto the same glomeruli in the brain [1-7]. Most odorants activate a combination of receptors and thus distinct patterns of glomeruli, forming a proposed combinatorial spatial code that could support discrimination between a large number of odorants [8-11]. OSNs also exhibit odor-evoked responses with complex temporal dynamics [11], but the contribution of this activity to behavioral odor discrimination has received little attention [12].

View Article and Find Full Text PDF

Mutation of human microcephalin (MCPH1) causes autosomal recessive primary microcephaly, a developmental disorder characterized by reduced brain size. We identified mcph1, the Drosophila homolog of MCPH1, in a genetic screen for regulators of S-M cycles in the early embryo. Embryos of null mcph1 female flies undergo mitotic arrest with barrel-shaped spindles lacking centrosomes.

View Article and Find Full Text PDF