Publications by authors named "Sakthi Rajendran"

Unlabelled: Aberrant levels or structures of RNA isoforms are a hallmark of many cancers, including acute myeloid leukemia (AML), yet their role in AML chemoresistance remains unclear. We conducted a paired analysis of RNA isoform changes in patients with AML before therapy and at relapse after chemotherapy and identified intragenic DNA methylation at the proximal promoter of the transcription factor RUNX1, which resulted in elevated expression of the long-isoform RUNX1C through its alternative distal promoter. The unique N-terminal region of RUNX1C orchestrated an isoform-specific transcriptional program that promoted chemoresistance, with its direct target BTG2 playing a role in chemotherapy resistance.

View Article and Find Full Text PDF

High-grade gliomas (HGGs) and glioblastomas (GBMs) are the most aggressive and lethal brain tumors. The current standard of care (SOC) includes gross safe surgical resection followed by chemoradiotherapy. The main chemotherapeutic agents are the DNA-alkylating agent temozolomide (TMZ) and adjuvants.

View Article and Find Full Text PDF

Regulatory T cells (Treg) are important players in the tumor microenvironment. However, the mechanisms behind their immunosuppressive effects are poorly understood. We found that CCR6-CCL20 activity in tumor-infiltrating Tregs is associated with greater glycolytic activity and ablation of Ccr6 reduced glycolysis and lactic acid production while increasing compensatory glutamine metabolism.

View Article and Find Full Text PDF

Gliomas are one of the leading causes of cancer-related death in the adolescent and young adult (AYA) population. Two-thirds of AYA glioma patients are affected by low-grade gliomas (LGGs), but there are no specific treatments. Malignant progression is supported by the immunosuppressive stromal component of the tumor microenvironment (TME) exacerbated by M2 macrophages and a paucity of cytotoxic T cells.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research highlights how the tumor environment affects high-grade gliomas (HGGs) and the role of myeloid cells in this process.
  • Scientists studied how different immune cells act in low-grade gliomas (LGGs) compared to HGGs using a special technique called single-cell RNA sequencing.
  • They found that while LGGs have more active immune cells, HGGs lose this immune activity; targeting certain macrophages in LGGs might help prevent them from becoming more dangerous.
View Article and Find Full Text PDF

Central nervous system (CNS) tumors are the most common type of solid tumors in children and the leading cause of cancer deaths in ages 0-14. Recent advances in the field of tumor biology and immunology have underscored the disparate nature of these distinct CNS tumor types. In this review, we briefly introduce pediatric CNS tumors and discuss various components of the TME, with a particular focus on myeloid cells.

View Article and Find Full Text PDF

Mutations in the gene are the cause of an ultra-rare neurological disorder characterized by intellectual disability, impaired speech, motor delay, and hypotonia evolving to spasticity, central sleep apnea, and premature death (SPG49 or HSAN9; OMIM: 615031). Little is known about the biological function of TECPR2, and there are currently no available disease-modifying therapies for this disease. Here we describe implementation of an antisense oligonucleotide (ASO) exon-skipping strategy targeting c.

View Article and Find Full Text PDF

Aims/hypothesis: We aimed to characterise and quantify the expression of HLA class II (HLA-II) in human pancreatic tissue sections and to analyse its induction in human islets.

Methods: We immunostained human pancreatic tissue sections from non-diabetic (n = 5), autoantibody positive (Aab+; n = 5), and type 1 diabetic (n = 5) donors, obtained from the Network of Pancreatic Organ Donors (nPOD), with HLA-II, CD68 and insulin. Each tissue section was acquired with a widefield slide scanner and then analysed with QuPath software.

View Article and Find Full Text PDF

Purpose: IL-17 is an important effector cytokine driving immune-mediated destruction in autoimmune diseases such as psoriasis. Blockade of the IL-17 pathway after the initiation of insulitis was effective in delaying or preventing the onset of type 1 diabetes (T1D) in rodent models. Expression of IL-17 transcripts in islets from a donor with recent-onset T1D has been reported, however, studies regarding IL-17 protein expression are lacking.

View Article and Find Full Text PDF

Human leukocyte antigens of class-I (HLA-I) molecules are hyper-expressed in insulin-containing islets (ICI) of type 1 diabetic (T1D) donors. This study investigated the HLA-I expression in autoantibody positive (AAB+) donors and defined its intra-islet and intracellular localization as well as proximity to infiltrating CD8 T cells with high-resolution confocal microscopy. We found HLA-I hyper-expression had already occurred prior to clinical diagnosis of T1D in islets of AAB+ donors.

View Article and Find Full Text PDF

Since the establishment of the network for pancreatic organ donors with diabetes (nPOD), we have gained unprecedented insight into the pathology of human type 1 diabetes. Many of the pre-existing "dogmas", mostly derived from studies of animal models and sometimes limited human samples, have to be revised now. For example, we have learned that autoreactive CD8 T cells are present even in healthy individuals within the exocrine pancreas.

View Article and Find Full Text PDF

IL-6 is a pro-inflammatory cytokine upregulated in some autoimmune diseases. The role of IL-6 in the development of type 1 diabetes (T1D) is unclear. Clinical studies are investigating whether tocilizumab (anti-IL-6 receptor) can help preserve beta cell function in patients recently diagnosed with T1D.

View Article and Find Full Text PDF

Hodgkin Lymphoma (HL) is a malignancy that frequently affects young adults. Although, there are effective treatments not every patient responds, necessitating the development of novel therapeutic approaches, especially for relapsed and refractory cases. The two TNF receptor family members CD30 and CD137 are expressed on Hodgkin and Reed Sternberg (HRS) cells, the malignant cells in HL.

View Article and Find Full Text PDF
Article Synopsis
  • - CD137 is a co-stimulatory molecule that helps activated T cells, but in Hodgkin Lymphoma, it's also found on malignant Hodgkin Reed-Sternberg (HRS) cells, aiding their growth and evasion of the immune system.
  • - The study highlights that HRS cells, which mostly come from B cells, ectopically express CD137, raising questions about how this transformation occurs, particularly during Epstein-Barr virus (EBV) infection.
  • - The research reveals that EBV's latent membrane protein 1 (LMP1) triggers CD137 expression in HRS cells via the PI3K-AKT-mTOR pathway, with a significant correlation seen in nearly all CD137-positive HL cases.*
View Article and Find Full Text PDF

Intracortical probe technology, consisting of arrays of microelectrodes, offers a means of recording the bioelectrical activity from neural tissue. A major limitation of existing intracortical probe technology pertains to limited lifetime of 6 months to a year of recording after implantation. A major contributor to device failure is widely believed to be the interfacial mechanical mismatch of conventional stiff intracortical devices and the surrounding brain tissue.

View Article and Find Full Text PDF

CD137 and its ligand, CD137L, are expressed on activated T cells and antigen-presenting cells (APC), respectively, and are powerful inducers of cellular, type 1 immune responses. CD137 is ectopically expressed by Hodgkin and Reed-Sternberg (HRS) cells, the malignant cells in Hodgkin lymphoma (HL). Here we report that CD137 transmits signals into HRS cells, which induce the secretion of IL-13.

View Article and Find Full Text PDF

CD137 is expressed on activated T cells and NK cells, among others, and is a potent co-stimulator of antitumor immune responses. CD137 ligand (CD137L) is expressed by antigen presenting cells (APC), and CD137L reverse signaling into APC enhances their activity. CD137-CD137L interactions as main driver of type 1, cell-mediated immune responses explains the puzzling observation that CD137 agonists which enhance antitumor immune responses also ameliorate autoimmune diseases.

View Article and Find Full Text PDF