Publications by authors named "Luis A Williams"

Article Synopsis
  • Fragile X syndrome (FXS) is caused by hypermethylation of CGG repeats in the FMR1 gene, resulting in loss of FMRP, which is crucial for normal neuronal function.
  • Research has shown that FMRP loss leads to abnormal synaptic activity and hyperexcitability in neurons, but effective treatments have yet to be found due to translation issues from animal models to humans.
  • A new high-resolution all-optical electrophysiology platform has been developed to create a sensitive assay that measures FMRP re-expression and healthy neuron restoration, which can be used to identify potential new therapies for FXS.
View Article and Find Full Text PDF
Article Synopsis
  • Chronic pain from osteoarthritis (OA) is difficult to treat, necessitating new models to understand its biology and develop effective therapies.
  • Researchers created an in vitro model using dorsal root ganglion (DRG) sensory neurons sensitized by an inflammatory cocktail called SPARC, showing that these components can lead to pain responses.
  • The study involved high-throughput optical electrophysiology to analyze the effects of approximately 3,000 drugs on the OA-SPARC-induced pain phenotype, highlighting the potential of the Raf-MEK-ERK signaling pathway in DRG neurons as a target for new analgesic treatments.
View Article and Find Full Text PDF

Hereditary sensory and autonomic neuropathy 9 (HSAN9) is a rare fatal neurological disease caused by mis- and nonsense mutations in the gene encoding for Tectonin β-propeller repeat containing protein 2 (TECPR2). While TECPR2 is required for lysosomal consumption of autophagosomes and ER-to-Golgi transport, it remains elusive how exactly TECPR2 is involved in autophagy and secretion and what downstream sequels arise from defective TECPR2 due to its involvement in these processes. To address these questions, we determine molecular consequences of TECPR2 deficiency along the secretory pathway.

View Article and Find Full Text PDF

Mutations in the gene are the cause of an ultra-rare neurological disorder characterized by intellectual disability, impaired speech, motor delay, and hypotonia evolving to spasticity, central sleep apnea, and premature death (SPG49 or HSAN9; OMIM: 615031). Little is known about the biological function of TECPR2, and there are currently no available disease-modifying therapies for this disease. Here we describe implementation of an antisense oligonucleotide (ASO) exon-skipping strategy targeting c.

View Article and Find Full Text PDF

Induced pluripotent stem cell (iPSC) and gene editing technologies have revolutionized the field of in vitro disease modeling, granting us access to disease-pertinent human cells of the central nervous system. These technologies are particularly well suited for the study of diseases with strong monogenic etiologies. Epilepsy is one of the most common neurological disorders in children, with approximately half of all genetic cases caused by mutations in ion channel genes.

View Article and Find Full Text PDF
Article Synopsis
  • The use of CRISPR/Cas9 for editing human induced pluripotent stem cells (iPSCs) is crucial for studying how genetic changes affect cell traits, but there's a lack of quality control for these edited cells.
  • Research found that 33% of 27 iPSC clones had large genomic defects that standard tests, like PCR and Sanger sequencing, failed to detect.
  • The study proposes a cost-effective quality control method that effectively identifies harmful defects in edited iPSCs, improving the reliability of related research.
View Article and Find Full Text PDF

Mutations in KCNC3, the gene that encodes the Kv3.3 voltage dependent potassium channel, cause Spinocerebellar Ataxia type 13 (SCA13), a disease associated with disrupted motor behaviors, progressive cerebellar degeneration, and abnormal auditory processing. The Kv3.

View Article and Find Full Text PDF

Optogenetics provides a powerful approach for investigating neuronal electrophysiology at the scale required for drug discovery applications. Probing synaptic function with high throughput using optogenetics requires robust tools that enable both precise stimulation of and facile readout of synaptic activity. Here we describe two functional assays to achieve this end: (1) a pre-synaptic calcium assay that utilizes the channelrhodopsin, CheRiff, patterned optogenetic stimulus, and the pre-synaptically targeted calcium reporter jRGECO1a to monitor pre-synaptic changes in calcium influx and (2) a synaptic transmission assay in which CheRiff and cytosolic jRGECO1a are expressed in non-overlapping sets of neurons, enabling pre-synaptic stimulation and post-synaptic readout of activity.

View Article and Find Full Text PDF

The findings that amyotrophic lateral sclerosis (ALS) patients almost universally display pathological mislocalization of the RNA-binding protein TDP-43 and that mutations in its gene cause familial ALS have nominated altered RNA metabolism as a disease mechanism. However, the RNAs regulated by TDP-43 in motor neurons and their connection to neuropathy remain to be identified. Here we report transcripts whose abundances in human motor neurons are sensitive to TDP-43 depletion.

View Article and Find Full Text PDF

Induced pluripotent stem (iPS) cells offer the exciting opportunity for modeling neurological disorders in vitro in the context of a human genetic background. While significant progress has been made in advancing the use of iPS cell-based disease models, there remains an unmet need to characterize the electrophysiological profile of individual neurons with sufficient throughput to enable statistically robust assessment of disease phenotypes and pharmacological modulation. Here, we describe the Optopatch platform technology that utilizes optogenetics to both stimulate and record action potentials (APs) from human iPS cell-derived excitatory neurons with similar information content to manual patch clamp electrophysiology, but with ~  3 orders of magnitude greater throughput.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease selectively targeting motor neurons in the brain and spinal cord. The reasons for differential motor neuron susceptibility remain elusive. We developed a stem cell-based motor neuron assay to study cell-autonomous mechanisms causing motor neuron degeneration, with implications for ALS.

View Article and Find Full Text PDF

TAR DNA-binding protein 43 (TDP-43) is a key player in neurodegenerative diseases including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Accumulation of TDP-43 is associated with neuronal death in the brain. How increased and disease-causing mutant forms of TDP-43 induce cell death remains unclear.

View Article and Find Full Text PDF

A key challenge for establishing a phenotypic screen for neuronal excitability is measurement of membrane potential changes with high throughput and accuracy. Most approaches for probing excitability rely on low-throughput, invasive methods or lack cell-specific information. These limitations stimulated the development of novel strategies for characterizing the electrical properties of cultured neurons.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing motor neuron disease. Astrocytic factors are known to contribute to motor neuron degeneration and death in ALS. However, the role of astrocyte in promoting motor neuron protein aggregation, a disease hallmark of ALS, remains largely unclear.

View Article and Find Full Text PDF

The reprogramming of somatic cells to pluripotency using defined transcription factors holds great promise for biomedicine. However, human reprogramming remains inefficient and relies either on the use of the potentially dangerous oncogenes KLF4 and CMYC or the genetic inhibition of the tumor suppressor gene p53. We hypothesized that inhibition of signal transduction pathways that promote differentiation of the target somatic cells during development might relieve the requirement for non-core pluripotency factors during induced pluripotent stem cell (iPSC) reprogramming.

View Article and Find Full Text PDF

Although many distinct mutations in a variety of genes are known to cause Amyotrophic Lateral Sclerosis (ALS), it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neuronal degeneration. Here, we have combined reprogramming and stem cell differentiation approaches with genome engineering and RNA sequencing to define the transcriptional and functional changes that are induced in human motor neurons by mutant SOD1. Mutant SOD1 protein induced a transcriptional signature indicative of increased oxidative stress, reduced mitochondrial function, altered subcellular transport, and activation of the ER stress and unfolded protein response pathways.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor nervous system. We show using multielectrode array and patch-clamp recordings that hyperexcitability detected by clinical neurophysiological studies of ALS patients is recapitulated in induced pluripotent stem cell-derived motor neurons from ALS patients harboring superoxide dismutase 1 (SOD1), C9orf72, and fused-in-sarcoma mutations. Motor neurons produced from a genetically corrected but otherwise isogenic SOD1(+/+) stem cell line do not display the hyperexcitability phenotype.

View Article and Find Full Text PDF

The RNA-binding protein TDP-43 regulates RNA metabolism at multiple levels, including transcription, RNA splicing, and mRNA stability. TDP-43 is a major component of the cytoplasmic inclusions characteristic of amyotrophic lateral sclerosis and some types of frontotemporal lobar degeneration. The importance of TDP-43 in disease is underscored by the fact that dominant missense mutations are sufficient to cause disease, although the role of TDP-43 in pathogenesis is unknown.

View Article and Find Full Text PDF

All muscle movements, including breathing, walking, and fine motor skills rely on the function of the spinal motor neuron to transmit signals from the brain to individual muscle groups. Loss of spinal motor neuron function underlies several neurological disorders for which treatment has been hampered by the inability to obtain sufficient quantities of primary motor neurons to perform mechanistic studies or drug screens. Progress towards overcoming this challenge has been achieved through the synthesis of developmental biology paradigms and advances in stem cell and reprogramming technology, which allow the production of motor neurons in vitro.

View Article and Find Full Text PDF

Background: The INNER NO OUTER (INO) gene, which encodes a YABBY-type transcription factor, specifies and promotes the growth of the outer integument of the ovule in Arabidopsis. INO expression is limited to the abaxial cell layer of the developing outer integument of the ovule and is regulated by multiple regions of the INO promoter, including POS9, a positive element that when present in quadruplicate can produce low-level expression in the normal INO pattern.

Results: Significant redundancy in activity between different regions of the INO promoter is demonstrated.

View Article and Find Full Text PDF

Among the disciplines of medicine, the study of neurological disorders is particularly challenging. The fundamental inaccessibility of the human neural types affected by disease prevents their isolation for in vitro studies of degenerative mechanisms or for drug screening efforts. However, the ability to reprogram readily accessible tissue from patients into pluripotent stem (iPS) cells may now provide a general solution to this shortage of human neurons.

View Article and Find Full Text PDF

Analysis of the Arabidopsis thaliana RING-ANK (for Really Interesting New Gene-Ankyrin) family, a subgroup of RING-type E3 ligases, identified KEEP ON GOING (KEG) as essential for growth and development. In addition to the RING-HCa and ankyrin repeats, KEG contains a kinase domain and 12 HERC2-like repeats. The RING-HCa and kinase domains were functional in in vitro ubiquitylation and phosphorylation assays, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • - The INO gene, crucial for developing outer integument in Arabidopsis ovules, shows expression only in the abaxial cell layer, with three key regions identified in its promoter that influence this pattern.
  • - One specific region, named POS9, can replicate the INO expression when multiplied and paired with a basic promoter, but known regulators of INO don't interact with POS9.
  • - POS9 was found to interact with two groups of proteins, including C2H2 zinc finger motifs and BASIC PENTACYSTEINE (BPC) proteins, which may play a significant role in regulating multiple genes in plants due to their ability to bind to DNA sequences within this region.
View Article and Find Full Text PDF