Publications by authors named "Sabarinathan Radhakrishnan"

Human papillomaviral (HPV) integrations into host human genome, a frequently observed event in HPV associated cervical cancer, are currently mapped through expensive Whole Genome sequencing (WGS) or RNA sequencing (RNA-seq) methodologies. This study aims to develop a targeted sequencing assay to determine HPV integrations in cervical tumors without the need for WGS or RNA-seq. We employed a library preparation strategy using tiled single primers that bind to HPV genome as a template and possibly extend HPV sequences into adjacent host human genomic sequences resulting in HPV and human chimeric sequences.

View Article and Find Full Text PDF

Background: Breast cancer is the most common cancer in Indian women with a high incidence of triple negative breast cancer (TNBC). The high TNBC prevalence (>25 %) in India remains a challenge in clinical management. Association of germline BRCA1/2 mutations in TNBCs is well-established as a predisposing factor for hereditary breast cancer risk.

View Article and Find Full Text PDF

Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • HPV infections are a major cause of cervical cancer, often integrating their DNA into the host genome, which affects gene regulation and chromatin structure.
  • Research shows that HPV integration occurs more frequently in active chromatin regions, leading to increased expression of nearby genes, particularly within specific chromatin domains known as topologically associating domains (TADs).
  • Some TADs exhibit consistent HPV integrations that correlate with the overexpression of oncogenes like MYC and ERBB2, suggesting that HPV may promote cancer progression through complex interactions within the genome.
View Article and Find Full Text PDF

Background: Androgen receptor (AR) is considered a marker of better prognosis in hormone receptor positive breast cancers (BC), however, its role in triple negative breast cancer (TNBC) is controversial. This may be attributed to intrinsic molecular differences or scoring methods for AR positivity. We derived AR regulated gene score and examined its utility in BC subtypes.

View Article and Find Full Text PDF

Induction of immunoproteasome (IP) expression in tumour cells can enhance antigen presentation and immunogenicity. Recently, the overexpression of IP genes has been associated with better prognosis and response to immune checkpoint blockade (ICB) therapies in melanoma. However, the extent of this association in other solid tumours and how that is influenced by tumour cell-intrinsic and cell-extrinsic factors remain unclear.

View Article and Find Full Text PDF

Vertebrate genomes are partitioned into chromatin domains or topologically associating domains (TADs), which are typically bound by head-to-head pairs of CTCF binding sites. Transcription at domain boundaries correlates with better insulation; however, it is not known whether the boundary transcripts themselves contribute to boundary function. Here we characterize boundary-associated RNAs genome-wide, focusing on the disease-relevant and TAD.

View Article and Find Full Text PDF

Somatic structural variants (SVs) are widespread in cancer, but their impact on disease evolution is understudied due to a lack of methods to directly characterize their functional consequences. We present a computational method, scNOVA, which uses Strand-seq to perform haplotype-aware integration of SV discovery and molecular phenotyping in single cells by using nucleosome occupancy to infer gene expression as a readout. Application to leukemias and cell lines identifies local effects of copy-balanced rearrangements on gene deregulation, and consequences of SVs on aberrant signaling pathways in subclones.

View Article and Find Full Text PDF

Background: Mutations in TP53 not only affect its tumour suppressor activity but also exerts oncogenic gain-of-function activity. While the genome-wide mutant p53 binding sites have been identified in cancer cell lines, the chromatin accessibility landscape driven by mutant p53 in primary tumours is unknown. Here, we leveraged the chromatin accessibility data of primary tumours from The Cancer Genome Atlas (TCGA) to identify differentially accessible regions in mutant p53 tumours compared to wild-type p53 tumours, especially in breast and colon cancers.

View Article and Find Full Text PDF

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 has rapidly turned into a pandemic, infecting millions and causing 1 157 509 (as of 27 October 2020) deaths across the globe. In addition to studying the mode of transmission and evasion of host immune system, analysing the viral mutational landscape constitutes an area under active research. The latter is expected to impart knowledge on the emergence of different clades, subclades, viral protein functions and protein-protein and protein-RNA interactions during replication/transcription cycle of virus and response to host immune checkpoints.

View Article and Find Full Text PDF

An abnormally high rate of UV-light related mutations appears at transcription factor binding sites (TFBS) across melanomas. The binding of transcription factors (TFs) to the DNA impairs the repair of UV-induced lesions and certain TFs have been shown to increase the rate of generation of these lesions at their binding sites. However, the precise contribution of these two elements to the increase in mutation rate at TFBS in these malignant cells is not understood.

View Article and Find Full Text PDF

Early-onset sporadic rectal cancer (EOSRC) is a unique and predominant colorectal cancer (CRC) subtype in India. In order to understand the tumorigenic process in EOSRC, we performed whole-exome sequencing of 47 microsatellite stable EOSRC samples. Signature 1 was the predominant mutational signature in EOSRC, as previously shown in other CRC exome studies.

View Article and Find Full Text PDF

Genetic variation at the 8q24 locus is linked with the greater susceptibility to prostate cancer in men of African ancestry. One such African ancestry specific rare variant, rs72725854 (A>G/T) (~6% allele frequency) has been associated with a ~2-fold increase in prostate cancer risk. However, the functional relevance of this variant is unknown.

View Article and Find Full Text PDF

Twist1 is a basic helix-loop-helix transcription factor, essential during early development in mammals. While Twist1 induces epithelial-to-mesenchymal transition (EMT), here we show that Twist1 overexpression enhances nuclear and mitotic aberrations. This is accompanied by an increase in whole chromosomal copy number gains and losses, underscoring the role of Twist1 in inducing chromosomal instability (CIN) in colorectal cancer cells.

View Article and Find Full Text PDF

Somatic mutations in cancer genomes are caused by multiple mutational processes, each of which generates a characteristic mutational signature. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we characterized mutational signatures using 84,729,690 somatic mutations from 4,645 whole-genome and 19,184 exome sequences that encompass most types of cancer. We identified 49 single-base-substitution, 11 doublet-base-substitution, 4 clustered-base-substitution and 17 small insertion-and-deletion signatures.

View Article and Find Full Text PDF

The discovery of drivers of cancer has traditionally focused on protein-coding genes. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods.

View Article and Find Full Text PDF

Large-scale chromatin features, such as replication time and accessibility influence the rate of somatic and germline mutations at the megabase scale. This article reviews how local chromatin structures -e.g.

View Article and Find Full Text PDF

Self-contained structured domains of RNA sequences have often distinct molecular functions. Determining the boundaries of structured domains of a non-coding RNA (ncRNA) is needed for many ncRNA gene finder programs that predict RNA secondary structures in aligned genomes because these methods do not necessarily provide precise information about the boundaries or the location of the RNA structure inside the predicted ncRNA. Even without having a structure prediction, it is of interest to search for structured domains, such as for finding common RNA motifs in RNA-protein binding assays.

View Article and Find Full Text PDF

Mutation rates along the genome are highly variable and influenced by several chromatin features. Here, we addressed how nucleosomes, the most pervasive chromatin structure in eukaryotes, affect the generation of mutations. We discovered that within nucleosomes, the somatic mutation rate across several tumor cohorts exhibits a strong 10 base pair (bp) periodicity.

View Article and Find Full Text PDF