Publications by authors named "Nicholas J Haradhvala"

Reports of secondary malignancies after chimeric antigen receptor (CAR)-T and possible CAR-T derived malignant transformation necessitate caution. Here we describe a patient with diffuse large B-cell lymphoma who developed new lymphadenopathy 2.5 years after CAR-T in the context of COVID-19 infection with histopathologic features consistent with T-cell lymphoma (TCL).

View Article and Find Full Text PDF

Multiple myeloma is a bone marrow (BM) plasma cell malignancy preceded by precursor conditions. BM biopsies are conducted infrequently and can yield inconclusive results due to technical limitations. Profiling circulating tumor cells (CTCs) may enable noninvasive routine clinical assessments but remains challenging.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell therapy is an effective treatment strategy for B-cell malignancies; however, its efficacy in solid tumors remains limited. VEGF-targeted drugs are used as antitumor agents to target abnormal tumor vasculature; however, toxicities associated with systemic VEGF blockade limit their maximal therapeutic benefit. Increasing evidence suggests a role for VEGF in the immunosuppressive tumor microenvironment, including through direct induction of T cell-effector dysfunction.

View Article and Find Full Text PDF

The development of targeted therapy for patients with multiple myeloma (MM) is hampered by the low frequency of actionable genetic abnormalities. Gain or amplification of chromosome 1q (1q+) is the most frequent arm-level copy number gain in patients with MM and is associated with higher risk of progression and death despite recent therapeutic advances. Thus, developing targeted therapy for patients with MM with 1q+ stands to benefit a large portion of patients in need of more effective management.

View Article and Find Full Text PDF

Waldenstrom's Macroglobulinemia (WM) is an IgM-secreting bone marrow (BM) lymphoma that is preceded by an asymptomatic state (AWM). To dissect tumor-intrinsic and immune mechanisms of progression, we perform single-cell RNA-sequencing on 294,206 BM tumor and immune cells from 30 patients with AWM/WM, 26 patients with Smoldering Myeloma, and 23 healthy donors. Despite their early stage, patients with AWM present extensive immune dysregulation, including in normal B cells, with disease-specific immune hallmarks.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T-cell (CAR-T) therapy is limited by cytokine release syndrome (CRS) and neurotoxicity (NT). We sought to use once-daily prophylactic anakinra, an interleukin-1 (IL-1) receptor antagonist, to prevent CRS/NT that would require hospitalization (grade ≥2) in patients receiving axicabtagene ciloleucel for large-cell lymphoma, with the goal of facilitating outpatient therapy and management. Our study, in line with others, demonstrates that once-daily prophylactic anakinra is insufficient to prevent the development of toxicities that would require hospitalization in most patients.

View Article and Find Full Text PDF

Approximately 50% of patients with hematologic malignancies relapse after chimeric antigen receptor (CAR) T cell treatment; mechanisms of failure include loss of CAR T persistence and tumor resistance to apoptosis. We hypothesized that both of these challenges could potentially be overcome by overexpressing one or more of the Bcl-2 family proteins in CAR T cells to reduce their susceptibility to apoptosis, both alone and in the presence of BH3 mimetics, which can be used to activate apoptotic machinery in malignant cells. We comprehensively investigated overexpression of different Bcl-2 family proteins in CAR T cells with different signaling domains as well as in different tumor types.

View Article and Find Full Text PDF

We report a first-in-human clinical trial using chimeric antigen receptor (CAR) T cells targeting CD37, an antigen highly expressed in B- and T-cell malignancies. Five patients with relapsed or refractory CD37+ lymphoid malignancies were enrolled and infused with autologous CAR-37 T cells. CAR-37 T cells expanded in the peripheral blood of all patients and, at peak, comprised >94% of the total lymphocytes in 4 of 5 patients.

View Article and Find Full Text PDF

Single-cell RNA sequencing has emerged as a powerful technique to understand the molecular features of chimeric antigen receptor (CAR) T cells that associate with clinical outcomes. Here we discuss the common themes that have emerged from across single-cell studies of CAR T-cell therapy, and summarize the challenges in interpreting this complex data type.

View Article and Find Full Text PDF

Cell therapies have yielded durable clinical benefits for patients with cancer, but the risks associated with the development of therapies from manipulated human cells are understudied. For example, we lack a comprehensive understanding of the mechanisms of toxicities observed in patients receiving T cell therapies, including recent reports of encephalitis caused by reactivation of human herpesvirus 6 (HHV-6). Here, through petabase-scale viral genomics mining, we examine the landscape of human latent viral reactivation and demonstrate that HHV-6B can become reactivated in cultures of human CD4 T cells.

View Article and Find Full Text PDF
Article Synopsis
  • Post-translational modifications (PTMs) significantly influence cell signaling and physiology in both healthy and cancerous cells, with recent advancements in mass spectrometry allowing for precise analysis of these modifications.* -
  • This study utilizes the largest dataset of proteogenomics from 1,110 cancer patients to uncover widespread patterns of protein changes, particularly focusing on acetylation and phosphorylation across 11 cancer types.* -
  • Findings show that specific cancer types exhibit unique PTM-related alterations linked to processes like DNA repair, immune response, kinase activity, and histone regulation, suggesting new potential therapeutic targets.*
View Article and Find Full Text PDF
Article Synopsis
  • - The study highlights the challenge in creating targeted therapies for Multiple Myeloma (MM) due to the rarity of genetic abnormalities, with the common amplification of chromosome 1q (Amp1q) linked to poorer outcomes for patients.
  • - Researchers used large-scale screening methods to identify that MM patients with Amp1q have increased sensitivity to a combination of MCL1 and PI3K inhibitors, which could potentially lead to more effective treatments.
  • - Further analysis through single-cell RNA sequencing revealed differences in the PI3K pathway's activity between cancer cells with and without Amp1q, suggesting that targeting this pathway along with MCL1 could enhance treatment efficacy for affected patients.
View Article and Find Full Text PDF

Multiple myeloma is a plasma cell malignancy almost always preceded by precursor conditions, but low tumor burden of these early stages has hindered the study of their molecular programs through bulk sequencing technologies. Here, we generate and analyze single cell RNA-sequencing of plasma cells from 26 patients at varying disease stages and 9 healthy donors. In silico dissection and comparison of normal and transformed plasma cells from the same bone marrow biopsy enables discovery of patient-specific transcriptional changes.

View Article and Find Full Text PDF
Article Synopsis
  • Patients with smoldering multiple myeloma usually wait for their condition to get worse before starting treatment, but treating them early might help them live better.
  • A study tested a combination of three medicines (elotuzumab, lenalidomide, and dexamethasone) on patients with a more serious form of the disease and looked at their blood samples to see how their immune cells changed.
  • The results showed that early treatment was safe and might help, and how similar a patient’s immune system is to healthy people can help predict how well they will do with the treatment.
View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cell therapy has revolutionized the treatment of hematologic malignancies. Approximately half of patients with refractory large B cell lymphomas achieve durable responses from CD19-targeting CAR-T treatment; however, failure mechanisms are identified in only a fraction of cases. To gain new insights into the basis of clinical response, we performed single-cell transcriptome sequencing of 105 pretreatment and post-treatment peripheral blood mononuclear cell samples, and infusion products collected from 32 individuals with large B cell lymphoma treated with either of two CD19 CAR-T products: axicabtagene ciloleucel (axi-cel) or tisagenlecleucel (tisa-cel).

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) therapy has had a transformative effect on the treatment of haematologic malignancies, but it has shown limited efficacy against solid tumours. Solid tumours may have cell-intrinsic resistance mechanisms to CAR T cell cytotoxicity. Here, to systematically identify potential resistance pathways in an unbiased manner, we conducted a genome-wide CRISPR knockout screen in glioblastoma, a disease in which CAR T cells have had limited efficacy.

View Article and Find Full Text PDF

Design of nucleic acid-based viral diagnostics typically follows heuristic rules and, to contend with viral variation, focuses on a genome's conserved regions. A design process could, instead, directly optimize diagnostic effectiveness using a learned model of sensitivity for targets and their variants. Toward that goal, we screen 19,209 diagnostic-target pairs, concentrated on CRISPR-based diagnostics, and train a deep neural network to accurately predict diagnostic readout.

View Article and Find Full Text PDF
Article Synopsis
  • Precursor states of Multiple Myeloma (MM) require detailed molecular analysis to improve risk assessment and treatment strategies for patients.
  • Single-cell RNA sequencing revealed early immune system changes, including increased NK cell abundance and altered chemokine receptor expression in precursor stages like MGUS and smoldering myeloma (SMM).
  • The study identified loss of specific T-cells and dysregulation of MHC class II in monocytes, both contributing to T cell suppression, offering insights for better immune-based patient stratification in MM progression.
View Article and Find Full Text PDF
Article Synopsis
  • Replication repair deficiency, resulting from mismatch repair deficiency (MMRD) and/or loss of DNA polymerase proofreading, leads to hypermutation in cancer, with microsatellite instability (MSI) being a key indicator of MMRD.
  • Genome-wide analysis reveals a connection between loss of polymerase proofreading and MSI, particularly when both replication repair mechanisms are compromised, highlighting distinct mutation signatures (MS-sigs).
  • The study emphasizes the clinical utility of MS-sigs in identifying replication repair deficiencies in cancer patients and predicting their responses to immunotherapy, enhancing diagnosis and treatment strategies.
View Article and Find Full Text PDF

Background: Quiescence (G0) is a transient, cell cycle-arrested state. By entering G0, cancer cells survive unfavorable conditions such as chemotherapy and cause relapse. While G0 cells have been studied at the transcriptome level, how post-transcriptional regulation contributes to their chemoresistance remains unknown.

View Article and Find Full Text PDF

Somatic mutations in cancer genomes are caused by multiple mutational processes, each of which generates a characteristic mutational signature. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we characterized mutational signatures using 84,729,690 somatic mutations from 4,645 whole-genome and 19,184 exome sequences that encompass most types of cancer. We identified 49 single-base-substitution, 11 doublet-base-substitution, 4 clustered-base-substitution and 17 small insertion-and-deletion signatures.

View Article and Find Full Text PDF

The discovery of drivers of cancer has traditionally focused on protein-coding genes. Here we present analyses of driver point mutations and structural variants in non-coding regions across 2,658 genomes from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). For point mutations, we developed a statistically rigorous strategy for combining significance levels from multiple methods of driver discovery that overcomes the limitations of individual methods.

View Article and Find Full Text PDF