Publications by authors named "Ryan D Risgaard"

Introduction: Basal forebrain cholinergic neurons (BFCNs) are integral to learning, attention, and memory, and are prone to degeneration in Down syndrome (DS), Alzheimer's disease, and other neurodegenerative diseases. However, the mechanisms that lead to the degeneration of these neurons are not known.

Methods: Single-nucleus gene expression and Assay for Transposase-Accessible Chromatin (ATAC) sequencing were performed on postmortem human basal forebrain from unaffected control and DS tissue samples at 0-2 years of age (n = 4 each).

View Article and Find Full Text PDF

Down syndrome is the most common genetic cause of intellectual disability and is characterized by early-onset delays in motor, cognitive, and language development. The molecular mechanisms underlying these neurodevelopmental impairments remain poorly understood. Here, we utilized single-nucleus multiomic sequencing to simultaneously profile gene expression and chromatin accessibility in the Down syndrome prefrontal cortex during early postnatal development, a critical period for synaptogenesis, neural maturation, and developmental neuroimmune interactions.

View Article and Find Full Text PDF

Mammals have evolved a plethora of adaptations that have enabled them to thrive in diverse environments. Among the most significant is the emergence of a more complex brain, exemplified by the dramatic transformation of the dorsal cortex from a single layer of excitatory projection neurons (ExNs) in ancestors to a multilayered cerebral neocortex enriched with diverse intratelencephalic (IT) and extratelencephalic (ET) ExN subtypes. These ExNs established specialized projection systems, such as the corticospinal tract and corpus callosum, enhancing brain connectivity and functionality.

View Article and Find Full Text PDF

The prefrontal cortex (PFC) is critical for myriad high-cognitive functions and is associated with several neuropsychiatric disorders. Here, using Patch-seq and single-nucleus multiomic analyses, we identified genes and regulatory networks governing the maturation of distinct neuronal populations in the PFC of rhesus macaque. We discovered that specific electrophysiological properties exhibited distinct maturational kinetics and identified key genes underlying these properties.

View Article and Find Full Text PDF

Introduction: Basal forebrain cholinergic neurons (BFCNs) are integral to learning, attention, and memory, and are prone to degeneration in Down syndrome (DS), Alzheimer's disease, and other neurodegenerative diseases. However, the mechanisms that lead to the degeneration of these neurons are not known.

Methods: Single-nucleus gene expression and ATAC sequencing were performed on postmortem human basal forebrain from unaffected control and DS tissue samples at 0-2 years of age (n=4 each).

View Article and Find Full Text PDF

The human brain has evolved unique capabilities compared to other vertebrates. The mechanistic basis of these derived traits remains a fundamental question in biology due to its relevance to the origin of our cognitive abilities and behavioral repertoire, as well as to human-specific aspects of neuropsychiatric and neurodegenerative diseases. Comparisons of the human brain to those of nonhuman primates and other mammals have revealed that differences in the neuromodulatory systems, especially in the dopaminergic system, may govern some of these behavioral and cognitive alterations, including increased vulnerability to certain brain disorders.

View Article and Find Full Text PDF
Article Synopsis
  • Neural stem cells (NSCs) need to move out of a dormant state (quiescence) to generate new neurons, but current methods limit our understanding of this process.
  • A novel technique called fluorescence lifetime imaging (FLIM) reveals distinct autofluorescence profiles for quiescent and activated NSCs, with qNSCs showing specific lysosomal autofluorescence patterns that can indicate their activity levels.
  • By combining autofluorescence imaging with single-cell RNA sequencing, the study uncovers unique transcriptional features related to NSC quiescence and activation, enhancing our knowledge of how adult neurogenesis operates.
View Article and Find Full Text PDF

The granular dorsolateral prefrontal cortex (dlPFC) is an evolutionary specialization of primates that is centrally involved in cognition. We assessed more than 600,000 single-nucleus transcriptomes from adult human, chimpanzee, macaque, and marmoset dlPFC. Although most cell subtypes defined transcriptomically are conserved, we detected several that exist only in a subset of species as well as substantial species-specific molecular differences across homologous neuronal, glial, and non-neural subtypes.

View Article and Find Full Text PDF

The loss of fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS), the most common inherited intellectual disability. How the loss of FMRP alters protein expression and astroglial functions remains essentially unknown. Here we showed that selective loss of astroglial FMRP in vivo up-regulates a brain-enriched miRNA, miR-128-3p, in mouse and human FMRP-deficient astroglia, which suppresses developmental expression of astroglial metabotropic glutamate receptor 5 (mGluR5), a major receptor in mediating developmental astroglia to neuron communication.

View Article and Find Full Text PDF

RNA-binding proteins (RNA-BPs) play critical roles in development and disease to regulate gene expression. However, genome-wide identification of their targets in primary human cells has been challenging. Here, we applied a modified CLIP-seq strategy to identify genome-wide targets of the FMRP translational regulator 1 (FMR1), a brain-enriched RNA-BP, whose deficiency leads to Fragile X Syndrome (FXS), the most prevalent inherited intellectual disability.

View Article and Find Full Text PDF