Proc Natl Acad Sci U S A
November 2023
The explosive eruption of the Hunga Tonga-Hunga Ha'apai (HTHH) volcano on 15 January 2022 injected more water vapor into the stratosphere and to higher altitudes than ever observed in the satellite era. Here, the evolution of the stratospherically injected water vapor is examined as a function of latitude, altitude, and time in the year following the eruption (February to December 2022), and perturbations to stratospheric chemical composition resulting from the increased sulfate aerosols and water vapor are identified and analyzed. The average calculated mass distribution of elevated water vapor between hemispheres is approximately 78% Southern Hemisphere (SH) and 22% Northern Hemisphere in 2022.
View Article and Find Full Text PDFVehicles are a major source of anthropogenic emissions of carbon monoxide (CO), nitrogen oxides (NO), and black carbon (BC). CO and NO are known to be harmful to human health and contribute to ozone formation, while BC absorbs solar radiation that contributes to global warming and also has negative impacts on human health and visibility. Travel restrictions implemented during the COVID-19 pandemic provide researchers the opportunity to study the impact of large, on-road traffic reductions on local air quality.
View Article and Find Full Text PDFVarious mechanisms initiated by wildfires thinned the stratospheric ozone layer.
View Article and Find Full Text PDFEnviron Sci Technol
February 2022
We analyze airborne measurements of atmospheric CO concentration from 70 flights conducted over six years (2015-2020) using an inverse model to quantify the CO emissions from the Washington, DC, and Baltimore metropolitan areas. We found that CO emissions have been declining in the area at a rate of ≈-4.5 % a since 2015 or ≈-3.
View Article and Find Full Text PDFChemical loss of Arctic ozone due to anthropogenic halogens is driven by temperature, with more loss occurring during cold winters favourable for formation of polar stratospheric clouds (PSCs). We show that a positive, statistically significant rise in the local maxima of PSC formation potential (PFP) for cold winters is apparent in meteorological data collected over the past half century. Output from numerous General Circulation Models (GCMs) also exhibits positive trends in PFP over 1950 to 2100, with highest values occurring at end of century, for simulations driven by a large rise in the radiative forcing of climate from greenhouse gases (GHGs).
View Article and Find Full Text PDFMany Chemistry-Climate Models (CCMs) include a simplified treatment of brominated very short-lived (VSL) species by assuming CHBr as a surrogate for VSL. However, neglecting a comprehensive treatment of VSL in CCMs may yield an unrealistic representation of the associated impacts. Here, we use the Community Atmospheric Model with Chemistry (CAM-Chem) CCM to quantify the tropospheric and stratospheric changes between various VSL chemical approaches with increasing degrees of complexity (i.
View Article and Find Full Text PDFFormaldehyde (HCHO) directly affects the atmospheric oxidative capacity through its effects on HO. In remote marine environments, such as the Tropical Western Pacific (TWP), it is particularly important to understand the processes controlling the abundance of HCHO because model output from these regions is used to correct satellite retrievals of HCHO. Here, we have used observations from the CONTRAST field campaign, conducted during January and February 2014, to evaluate our understanding of the processes controlling the distribution of HCHO in the TWP as well as its representation in chemical transport/climate models.
View Article and Find Full Text PDFNatural gas production in the U.S. has increased rapidly over the past decade, along with concerns about methane (CH) leakage (total fugitive emissions), and climate impacts.
View Article and Find Full Text PDFGeophys Res Lett
September 2016
We use the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM), a contributor to both the 2010 and 2014 WMO Ozone Assessment Reports, to show that inclusion of 5 parts per trillion (ppt) of stratospheric bromine (Br) from very short-lived substances (VSLS) is responsible for about a decade delay in ozone hole recovery. These results partially explain the significantly later recovery of Antarctic ozone noted in the 2014 report, as bromine from VSLS was not included in the 2010 Assessment. We show multiple lines of evidence that simulations that account for VSLS Br are in better agreement with both total column BrO and the seasonal evolution of Antarctic ozone reported by the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite.
View Article and Find Full Text PDFA Comprehensive Air-Quality Model with Extensions (CAMx) version 6.10 simulation was assessed through comparison with data acquired during NASA's 2011 DISCOVER-AQ Maryland field campaign. Comparisons for the baseline simulation (CB05 chemistry, EPA 2011 National Emissions Inventory) show a model overestimate of NO by +86.
View Article and Find Full Text PDFAir parcels with mixing ratios of high O3 and low H2O (HOLW) are common features in the tropical western Pacific (TWP) mid-troposphere (300-700 hPa). Here, using data collected during aircraft sampling of the TWP in winter 2014, we find strong, positive correlations of O3 with multiple biomass burning tracers in these HOLW structures. Ozone levels in these structures are about a factor of three larger than background.
View Article and Find Full Text PDFThe atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude.
View Article and Find Full Text PDFVersion 3 of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment data set for some 30 trace and minor gas profiles is available. From the IR solar-absorption spectra measured during four Space Shuttle missions (in 1985, 1992, 1993, and 1994), profiles from more than 350 occultations were retrieved from the upper troposphere to the lower mesosphere. Previous results were unreliable for tropospheric retrievals, but with a new global-fitting algorithm profiles are reliably returned down to altitudes as low as 6.
View Article and Find Full Text PDF