Cells must accurately sense and respond to nutrients to compete for resources and establish growth. Phosphate is a critical nutrient source necessary for signaling, energy metabolism, and synthesis of nucleic acids, phospholipids, and cellular metabolites. During phosphate limitation, fungi import phosphate from the environment and liberate phosphate from phosphate-containing molecules in the cell.
View Article and Find Full Text PDFConserved non-coding sequences (CNSs) are integral elements of transcriptional regulation. Transcriptional tuning of PLETHORA (PLT) genes that encode master regulators of plant development is vital for embryogenesis and meristematic function. However, how the expression of PLT genes is modulated through CNSs remains unclear.
View Article and Find Full Text PDFTranscription factors (TFs) are proteins that bind DNA to control where and when genes are expressed. In plants, dozens of TF families interact with distinct sets of binding sites (TFBSs) that reflect each TF's role in organismal function and species-specific adaptations. However, defining these roles and understanding broader patterns of regulatory evolution remain challenging, as predicted TFBSs may lack a clear impact on transcription, and experimentally derived TF binding maps to date are modest in scale or restricted to model organisms.
View Article and Find Full Text PDFNucleosomes are the basic repeating unit, each spanning ≈150bp, that structures DNA in the nucleus and their positions have major consequences on gene activity. Here, through analyzing DNA signatures across 1117 microeukaryote genomes, we discovered ≈150bp shifts in A/T content associated with nucleosome organization. Often consecutively arrayed across the genome, A/T peaks were enriched surrounding transcriptional start sites in specific clades.
View Article and Find Full Text PDFPlants depend on the combined action of a shoot-root-soil system to maintain their anchorage to the soil. Mechanical failure of any component of this system results in lodging, a permanent and irreversible inability to maintain vertical orientation. Models of anchorage in grass crops identify the compressive strength of roots near the soil surface as the key determinant of resistance to lodging.
View Article and Find Full Text PDFUnlabelled: Cells must accurately sense and respond to nutrients to compete for resources and establish growth. Phosphate is a critical nutrient source necessary for signaling, energy metabolism, and synthesis of nucleic acids, phospholipids, and cellular metabolites. During phosphate limitation, fungi import phosphate from the environment and liberate phosphate from phosphate-containing molecules in the cell.
View Article and Find Full Text PDFBaló's concentric sclerosis (BCS) is regarded as a rare variant of multiple sclerosis (MS), characterised by multi-layered ring-like lesions in cerebral white matter. Despite pathological overlap with MS, the effect of treatment with MS disease-modifying therapies remains unclear. The only extant case report of alemtuzumab in BCS described a lack of clinical response in a patient who had previously not responded to corticosteroids, plasmapheresis and cyclophosphamide.
View Article and Find Full Text PDFThe symbiotic interaction of plants with arbuscular mycorrhizal (AM) fungi is ancient and widespread. Plants provide AM fungi with carbon in exchange for nutrients and water, making this interaction a prime target for crop improvement. However, plant-fungal interactions are restricted to a small subset of root cells, precluding the application of most conventional functional genomic techniques to study the molecular bases of these interactions.
View Article and Find Full Text PDFPlants depend on the combined action of a shoot-root-soil system to maintain their anchorage to the soil. Mechanical failure of any component of this system results in lodging, a permanent and irreversible inability to maintain vertical orientation. Models of anchorage in grass crops identify the compressive strength of roots near the soil surface as key determinant of resistance to lodging.
View Article and Find Full Text PDFPlant Direct
November 2023
The Salicaceae family is of growing interest in the study of dioecy in plants because the sex determination region (SDR) has been shown to be highly dynamic, with differing locations and heterogametic systems between species. Without the ability to transform and regenerate in tissue culture, previous studies investigating the mechanisms regulating sex in the genus have been limited to genome resequencing and differential gene expression, which are mostly descriptive in nature, and functional validation of candidate sex determination genes has not yet been conducted. Here, we used Arabidopsis to functionally characterize a suite of previously identified candidate genes involved in sex determination and sex dimorphism in the bioenergy shrub willow .
View Article and Find Full Text PDFPsychotherapy (Chic)
December 2023
The quantitative reviews of the outcome research on couple therapy show that this type of therapy can produce positive outcomes for couples and improve relationship satisfaction. There is now also a number of qualitative studies in which clients report in their own words on the outcomes of couple therapy. This study aimed to meta-analyze the client-reported outcomes of couple therapy generated in the studies using qualitative methods.
View Article and Find Full Text PDFMetagenome binning is a key step, downstream of metagenome assembly, to group scaffolds by their genome of origin. Although accurate binning has been achieved on datasets containing multiple samples from the same community, the completeness of binning is often low in datasets with a small number of samples due to a lack of robust species co-abundance information. In this study, we exploited the chromatin conformation information obtained from Hi-C sequencing and developed a new reference-independent algorithm, Metagenome Binning with Abundance and Tetra-nucleotide frequencies-Long Range (metaBAT-LR), to improve the binning completeness of these datasets.
View Article and Find Full Text PDFPrevious research has provided strong evidence that speech patterns can help to distinguish between people with early stage neurodegenerative disorders (ND) and healthy controls. This study examined speech patterns in responses to questions asked by an intelligent virtual agent (IVA): a talking head on a computer which asks pre-recorded questions. The study investigated whether measures of response length, speech rate and pausing in responses to questions asked by an IVA help to distinguish between healthy control participants and people diagnosed with Mild Cognitive Impairment (MCI) or Alzheimer's disease (AD).
View Article and Find Full Text PDFWe describe a male patient presenting with cerebellar ataxia and behavioural frontotemporal dementia in whom imaging showed cerebellar atrophy. He had significantly low N-acetyl aspartate to creatine (NAA/Cr) area ratio on MR spectroscopy of the cerebellum, primarily affecting the vermis. CT body scan showed extensive abnormal tissue within the mesentery, the retroperitoneum and perinephric areas.
View Article and Find Full Text PDFA number of crop wild relatives can tolerate extreme stress to a degree outside the range observed in their domesticated relatives. However, it is unclear whether or how the molecular mechanisms employed by these species can be translated to domesticated crops. Paspalum (Paspalum vaginatum) is a self-incompatible and multiply stress-tolerant wild relative of maize and sorghum.
View Article and Find Full Text PDFDifferent high temperatures adversely affect crop and algal yields with various responses in photosynthetic cells. The list of genes required for thermotolerance remains elusive. Additionally, it is unclear how carbon source availability affects heat responses in plants and algae.
View Article and Find Full Text PDFChromatin modifications are epigenetic regulatory features with major roles in various cellular events, yet they remain understudied in algae. We interrogated the genome-wide distribution pattern of mono- and trimethylated histone H3 lysine 4 (H3K4) using chromatin-immunoprecipitation followed by deep-sequencing (ChIP-seq) during key phases of the Chlamydomonas cell cycle: early G phase, Zeitgeber Time 1 (ZT1), when cells initiate biomass accumulation, S/M phase (ZT13) when cells are replicating DNA and undergoing mitosis, and late G phase (ZT23) when they are quiescent. Tri-methylated H3K4 was predominantly enriched at transcription start sites of the majority of protein coding genes (85%).
View Article and Find Full Text PDFMicrobiol Spectr
June 2022
Novel bacterial isolates with the capabilities of lignin depolymerization, catabolism, or both, could be pertinent to lignocellulosic biofuel applications. In this study, we aimed to identify anaerobic bacteria that could address the economic challenges faced with microbial-mediated biotechnologies, such as the need for aeration and mixing. Using a consortium seeded from temperate forest soil and enriched under anoxic conditions with organosolv lignin as the sole carbon source, we successfully isolated a novel bacterium, designated 159R.
View Article and Find Full Text PDFThe eukaryotic green alga is a reference organism for studying carbon partitioning and a promising candidate for the production of biofuel precursors. Recent transcriptome profiling transformed our understanding of its biology and generally algal biology, but epigenetic regulation remains understudied and represents a fundamental gap in our understanding of algal gene expression. Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a powerful tool for the discovery of such mechanisms, by identifying genome-wide histone modification patterns and transcription factor-binding sites alike.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2022
ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) AND ATXR6 are required for the deposition of H3K27me1 and for maintaining genomic stability in Reduction of ATXR5/6 activity results in activation of DNA damage response genes, along with tissue-specific derepression of transposable elements (TEs), chromocenter decompaction, and genomic instability characterized by accumulation of excess DNA from heterochromatin. How loss of ATXR5/6 and H3K27me1 leads to these phenotypes remains unclear. Here we provide extensive characterization of the hypomorphic mutant by comprehensively examining gene expression and epigenetic changes in the mutant.
View Article and Find Full Text PDFOrganisms orchestrate cellular functions through transcription factor (TF) interactions with their target genes, although these regulatory relationships are largely unknown in most species. Here we report a high-throughput approach for characterizing TF-target gene interactions across species and its application to 354 TFs across 48 bacteria, generating 17,000 genome-wide binding maps. This dataset revealed themes of ancient conservation and rapid evolution of regulatory modules.
View Article and Find Full Text PDFMicrobial biosynthetic gene clusters (BGCs) encoding secondary metabolites are thought to impact a plethora of biologically mediated environmental processes, yet their discovery and functional characterization in natural microbiomes remains challenging. Here we describe deep long-read sequencing and assembly of metagenomes from biological soil crusts, a group of soil communities that are rich in BGCs. Taking advantage of the unusually long assemblies produced by this approach, we recovered nearly 3,000 BGCs for analysis, including 712 full-length BGCs.
View Article and Find Full Text PDF