Publications by authors named "Rohit Prakash"

Atrial fibrillation (AF) significantly increases stroke risk and hence requires anticoagulation for the prevention of stroke. This review discusses strategies of anticoagulation, including the paradigm shift from traditional vitamin K antagonists (VKAs), such as warfarin, to direct oral anticoagulants (DOACs): dabigatran, rivaroxaban, apixaban, and edoxaban. VKAs are effective but require regular monitoring of international normalized ratio and also pose challenges because of their drug and dietary interactions.

View Article and Find Full Text PDF
Article Synopsis
  • Immune checkpoint inhibitors (ICIs) are used as a treatment for advanced cancers but can lead to pancreatitis, with an incidence of about 1-2%, particularly higher in combination therapies.
  • The review examines the connections between ICIs and pancreatitis, including clinical presentations, diagnosis, management strategies, and emphasizes the need for better understanding of underlying mechanisms and risk factors.
  • Current diagnosis relies on clinical symptoms and imaging, while management may involve IV fluids and pain control, with ongoing exploration of immunosuppressants for severe cases; long-term monitoring is necessary due to potential chronic issues.
View Article and Find Full Text PDF

In the current study, the Sonogashira coupling reaction of danazol with aryl halides was carried out, yielding new aryl substituted danazol derivatives. The synthetic compounds were examined for anti-cancer potential on the HeLa human cervical cancer cell line, and they showed promising cytotoxic action. Synthesized compounds 2, 4 and 5 inhibited the growth of HeLa cervical cancer cells, potentially making them effective anti-cancer drugs in the future.

View Article and Find Full Text PDF

Mutations in homologous recombination (HR) genes, including , , and the RAD51 paralog , predispose to tumorigenesis and sensitize cancers to DNA-damaging agents and poly(ADP ribose) polymerase inhibitors. However, ∼800 missense variants of unknown significance have been identified for RAD51C alone, impairing cancer risk assessment and therapeutic strategies. Here, we interrogated >50 RAD51C missense variants, finding that mutations in residues conserved with RAD51 strongly predicted HR deficiency and disrupted interactions with other RAD51 paralogs.

View Article and Find Full Text PDF

RAD51 paralogs are key components of the homologous recombination (HR) machinery. Mouse mutants have been reported for four of the canonical RAD51 paralogs, and each of these mutants exhibits embryonic lethality, although at different gestational stages. However, the phenotype of mice deficient in the fifth RAD51 paralog, XRCC3, has not been reported.

View Article and Find Full Text PDF

Homology-directed repair (HDR), a critical DNA repair pathway in mammalian cells, is complex, leading to multiple outcomes with different impacts on genomic integrity. However, the factors that control these different outcomes are often not well understood. Here we show that SWS1-SWSAP1-SPIDR controls distinct types of HDR.

View Article and Find Full Text PDF

Mutations in homologous recombination (HR) genes predispose to cancer but also sensitize to chemotherapeutics. Although therapy can initially be effective, cancers frequently cease responding, leading to recurrence and poor prognosis. Here we identify a germline mutation in , a critical HR factor and known tumor suppressor, in an ovarian cancer patient with exceptionally long, progression-free survival.

View Article and Find Full Text PDF

Homologous recombination is a critical mechanism for the repair of DNA double-strand breaks (DSBs). It occurs predominantly between identical sister chromatids and at lower frequency can also occur between homologs. Interhomolog homologous recombination (IH-HR) has the potential lead to substantial loss of genetic information, i.

View Article and Find Full Text PDF

Deficiency in several of the classical human RAD51 paralogs [RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3] is associated with cancer predisposition and Fanconi anemia. To investigate their functions, isogenic disruption mutants for each were generated in non-transformed MCF10A mammary epithelial cells and in transformed U2OS and HEK293 cells. In U2OS and HEK293 cells, viable ablated clones were readily isolated for each RAD51 paralog; in contrast, with the exception of RAD51B, RAD51 paralogs are cell-essential in MCF10A cells.

View Article and Find Full Text PDF

The proficiency of cancer cells to repair DNA double-strand breaks (DSBs) by homologous recombination (HR) is a key determinant in predicting response to targeted therapies such as PARP inhibitors. The RAD51 paralogs work as multimeric complexes and act downstream of BRCA1 to facilitate HR. Numerous epidemiological studies have linked RAD51 paralog mutations with hereditary cancer predisposition.

View Article and Find Full Text PDF

The DNA-damage repair pathway homologous recombination (HR) requires factors that promote the activity of strand-exchange protein RAD51 and its meiosis-specific homolog DMC1. Here we show that the Shu complex SWS1-SWSAP1, a candidate for one such HR regulator, is dispensable for mouse viability but essential for male and female fertility, promoting the assembly of RAD51 and DMC1 on early meiotic HR intermediates. Only a fraction of mutant meiocytes progress to form crossovers, which are crucial for chromosome segregation, demonstrating crossover homeostasis.

View Article and Find Full Text PDF

High-grade epithelial ovarian carcinomas containing mutated or () homologous recombination (HR) genes are sensitive to platinum-based chemotherapy and PARP inhibitors (PARPi), while restoration of HR function due to secondary mutations in has been recognized as an important resistance mechanism. We sequenced core HR pathway genes in 12 pairs of pretreatment and postprogression tumor biopsy samples collected from patients in ARIEL2 Part 1, a phase II study of the PARPi rucaparib as treatment for platinum-sensitive, relapsed ovarian carcinoma. In 6 of 12 pretreatment biopsies, a truncation mutation in , or was identified.

View Article and Find Full Text PDF

Genomic instability is one of the primary models of carcinogenesis and a feature of almost all cancers. Homologous recombination (HR) repair protects against genomic instability by maintaining high genomic fidelity during the repair of DNA double strand breaks. The defining step of HR repair is the formation of the Rad51 nucleofilament, which facilitates the search for a homologous sequence and invasion of the template DNA strand.

View Article and Find Full Text PDF

The extracellular ionic environment in neural tissue has the capacity to influence, and be influenced by, natural bouts of neural activity. We employed optogenetic approaches to control and investigate these interactions within and between cells, and across spatial scales. We began by developing a temporally precise means to study microdomain-scale interactions between extracellular protons and acid-sensing ion channels (ASICs).

View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) are known to be powerful inducers of homologous recombination (HR), but single-strand breaks (nicks) have also been shown to trigger HR. Both DSB- and nick-induced HR ((nick)HR) are exploited in advanced genome-engineering approaches based on the bacterial RNA-guided nuclease Cas9. However, the mechanisms of (nick)HR are largely unexplored.

View Article and Find Full Text PDF

Homologous recombination (HR) is a major pathway for the repair of DNA double-strand breaks in mammalian cells, the defining step of which is homologous strand exchange directed by the RAD51 protein. The physiological importance of HR is underscored by the observation of genomic instability in HR-deficient cells and, importantly, the association of cancer predisposition and developmental defects with mutations in HR genes. The tumor suppressors BRCA1 and BRCA2, key players at different stages of HR, are frequently mutated in familial breast and ovarian cancers.

View Article and Find Full Text PDF

The brain is a large network of interconnected neurons where each cell functions as a nonlinear processing element. Unraveling the mysteries of information processing in the complex networks of the brain requires versatile neurostimulation and imaging techniques. Optogenetics is a new stimulation method which allows the activity of neurons to be modulated by light.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae Rad1/Rad10 complex is a multifunctional, structure-specific endonuclease that processes UV-induced DNA lesions, recombination intermediates, and inter-strand DNA crosslinks. However, we do not know how Rad1/Rad10 recognizes these structurally distinct target molecules or how it is incorporated into the protein complexes capable of incising divergent substrates. Here, we have determined the order and hierarchy of assembly of the Rad1/Rad10 complex, Saw1, Slx4, and Msh2/Msh3 complex at a 3' tailed recombination intermediate.

View Article and Find Full Text PDF

Optogenetics with microbial opsin genes has enabled high-speed control of genetically specified cell populations in intact tissue. However, it remains a challenge to independently control subsets of cells within the genetically targeted population. Although spatially precise excitation of target molecules can be achieved using two-photon laser-scanning microscopy (TPLSM) hardware, the integration of two-photon excitation with optogenetics has thus far required specialized equipment or scanning and has not yet been widely adopted.

View Article and Find Full Text PDF

We demonstrate a two-photon optogenetic method that generates action potentials in neurons with single-cell precision, using the red-shifted opsin C1V1(T). We applied the method to optically map synaptic circuits in mouse neocortical brain slices and to activate small dendritic regions and individual spines. Using a spatial light modulator, we split the laser beam onto several neurons and performed simultaneous optogenetic activation of selected neurons in three dimensions.

View Article and Find Full Text PDF

Diverse optogenetic tools have allowed versatile control over neural activity. Many depolarizing and hyperpolarizing tools have now been developed in multiple laboratories and tested across different preparations, presenting opportunities but also making it difficult to draw direct comparisons. This challenge has been compounded by the dependence of performance on parameters such as vector, promoter, expression time, illumination, cell type and many other variables.

View Article and Find Full Text PDF

Prevailing theory suggests that long-term memories are encoded via a two-phase process requiring early involvement of the hippocampus followed by the neocortex. Contextual fear memories in rodents rely on the hippocampus immediately following training but are unaffected by hippocampal lesions or pharmacological inhibition weeks later. With fast optogenetic methods, we examine the real-time contribution of hippocampal CA1 excitatory neurons to remote memory and find that contextual fear memory recall, even weeks after training, can be reversibly abolished by temporally precise optogenetic inhibition of CA1.

View Article and Find Full Text PDF

The ability to stimulate mammalian cells with light has significantly changed our understanding of electrically excitable tissues in health and disease, paving the way toward various novel therapeutic applications. Here, we demonstrate the potential of optogenetic control in cardiac cells using a hybrid experimental/computational technique. Experimentally, we introduced channelrhodopsin-2 into undifferentiated human embryonic stem cells via a lentiviral vector, and sorted and expanded the genetically engineered cells.

View Article and Find Full Text PDF
Article Synopsis
  • The Mph1 protein in budding yeast is similar to the human FANCM protein and has the ability to disrupt D-loop structures, which helps prevent chromosome crossovers during homologous recombination.
  • Mph1 is involved in repairing DNA replication forks and can reverse these forks as well as process the Holliday junction through DNA branch migration.
  • The protein also unwinds specific DNA structures related to the D-loop, highlighting its crucial role in fixing damaged replication forks and providing insights into its mechanisms.
View Article and Find Full Text PDF

Anxiety--a sustained state of heightened apprehension in the absence of immediate threat--becomes severely debilitating in disease states. Anxiety disorders represent the most common of psychiatric diseases (28% lifetime prevalence) and contribute to the aetiology of major depression and substance abuse. Although it has been proposed that the amygdala, a brain region important for emotional processing, has a role in anxiety, the neural mechanisms that control anxiety remain unclear.

View Article and Find Full Text PDF