Publications by authors named "Roger B Dodd"

We report the results of structural, functional and genetic studies on the CD33 sialic acid- binding receptor that reveal how non-coding variants in CD33 alter risk for Alzheimer's disease (AD). The full-length CD33 isoform, whose expression is upregulated by non-coding AD-risk alleles, preferentially forms dimers at the cell surface, where they interact with AD-related proteins (clusterin and Aβ). This interaction induces CD33 inhibitory signalling and downregulates protective microglial functions including phagocytic removal of amyloid plaques.

View Article and Find Full Text PDF

Computational free energy-based methods have the potential to significantly improve throughput and decrease costs of protein design efforts. Such methods must reach a high level of reliability, accuracy, and automation to be effectively deployed in practical industrial settings in a way that impacts protein design projects. Here, we present a benchmark study for the calculation of relative changes in protein-protein binding affinity for single point mutations across a variety of systems from the literature, using free energy perturbation (FEP+) calculations.

View Article and Find Full Text PDF
Article Synopsis
  • Computational free energy-based methods can enhance the efficiency and reduce the costs in protein design by requiring high reliability, accuracy, and automation for practical use in industry.
  • This study benchmarks the calculation of changes in protein-protein binding affinity due to single point mutations and utilizes free energy perturbation (FEP+) for improved outcomes.
  • The authors introduce a new method for evaluating protonation states and develop an automated script to identify and correct outlier cases, demonstrating the application of FEP+ in real-world protein design alongside identifying areas for future research.
View Article and Find Full Text PDF

Chemical inducer of dimerization (CID) modules can be used effectively as molecular switches to control biological processes, and thus there is significant interest within the synthetic biology community in identifying novel CID systems. To date, CID modules have been used primarily in engineering cells for in vitro applications. To broaden their utility to the clinical setting, including the potential to control cell and gene therapies, the identification of novel CID modules should consider factors such as the safety and pharmacokinetic profile of the small molecule inducer, and the orthogonality and immunogenicity of the protein components.

View Article and Find Full Text PDF

Background: Epithelial damage, repair and remodelling are critical features of chronic airway diseases including chronic obstructive pulmonary disease (COPD). Interleukin (IL)-33 released from damaged airway epithelia causes inflammation its receptor, serum stimulation-2 (ST2). Oxidation of IL-33 to a non-ST2-binding form (IL-33) is thought to limit its activity.

View Article and Find Full Text PDF

TREM2 is a pattern recognition receptor, expressed on microglia and myeloid cells, detecting lipids and Aβ and inducing an innate immune response. Missense mutations (e.g.

View Article and Find Full Text PDF

Partial loss-of-function variants in the TREM2 immune receptor are associated with increased risk for Alzheimer's disease (AD) and other forms of neurodegenerative disease, but the molecular bases for these connections are unknown. Three new structures of WT and R47H mutant TREM2 immunoglobulin-like (Ig-like) domain now reveal that R47 functions to correctly position elements of the ligand-binding surface. Intriguingly, the authors also demonstrate a disruption of receptor oligomerization by the R47H mutation, suggesting a role for ligand-induced clustering in receptor signaling and resultant plaque clearance.

View Article and Find Full Text PDF

Cell surface membrane proteins comprise a wide array of structurally and functionally diverse proteins involved in a variety of important physiological and homeostatic processes. Complex integral membrane proteins, which are embedded in the lipid bilayer by multiple transmembrane-spanning helices, are represented by families of proteins that are important target classes for drug discovery. Such protein families include G-protein-coupled receptors, ion channels and transporters.

View Article and Find Full Text PDF

We have characterised the proteolytic cleavage events responsible for the shedding of triggering receptor expressed on myeloid cells 2 (TREM2) from primary cultures of human macrophages, murine microglia and TREM2-expressing human embryonic kidney (HEK293) cells. In all cell types, a soluble 17 kDa N-terminal cleavage fragment was shed into the conditioned media in a constitutive process that is inhibited by G1254023X and metalloprotease inhibitors and siRNA targeting ADAM10. Inhibitors of serine proteases and matrix metalloproteinases 2/9, and ADAM17 siRNA did not block TREM2 shedding.

View Article and Find Full Text PDF

Hypoxia-inducible transcription factors (HIFs) control adaptation to low oxygen environments by activating genes involved in metabolism, angiogenesis, and redox homeostasis. The finding that HIFs are also regulated by small molecule metabolites highlights the need to understand the complexity of their cellular regulation. Here we use a forward genetic screen in near-haploid human cells to identify genes that stabilize HIFs under aerobic conditions.

View Article and Find Full Text PDF

The mechanisms by which mutations in FUS and other RNA binding proteins cause ALS and FTD remain controversial. We propose a model in which low-complexity (LC) domains of FUS drive its physiologically reversible assembly into membrane-free, liquid droplet and hydrogel-like structures. ALS/FTD mutations in LC or non-LC domains induce further phase transition into poorly soluble fibrillar hydrogels distinct from conventional amyloids.

View Article and Find Full Text PDF

CAAX proteins have essential roles in multiple signalling pathways, controlling processes such as proliferation, differentiation and carcinogenesis. The ∼120 mammalian CAAX proteins function at cellular membranes and include the Ras superfamily of small GTPases, nuclear lamins, the γ-subunit of heterotrimeric GTPases, and several protein kinases and phosphatases. The proper localization of CAAX proteins to cell membranes is orchestrated by a series of post-translational modifications of the carboxy-terminal CAAX motifs (where C is cysteine, A is an aliphatic amino acid and X is any amino acid).

View Article and Find Full Text PDF

Presenilin-mediated endoproteolysis of transmembrane proteins plays a key role in physiological signaling and in the pathogenesis of Alzheimer disease and some cancers. Numerous inhibitors have been found via library screens, but their structural mechanisms remain unknown. We used several biophysical techniques to investigate the structure of human presenilin complexes and the effects of peptidomimetic γ-secretase inhibitors.

View Article and Find Full Text PDF

The posttranslational modification of C-terminal CAAX motifs in proteins such as Ras, most Rho GTPases, and G protein γ subunits, plays an essential role in determining their subcellular localization and correct biological function. An integral membrane methyltransferase, isoprenylcysteine carboxyl methyltransferase (ICMT), catalyzes the final step of CAAX processing after prenylation of the cysteine residue and endoproteolysis of the -AAX motif. We have determined the crystal structure of a prokaryotic ICMT ortholog, revealing a markedly different architecture from conventional methyltransferases that utilize S-adenosyl-L-methionine (SAM) as a cofactor.

View Article and Find Full Text PDF

MHC class I molecules display peptides from endogenous and viral proteins for immunosurveillance by cytotoxic T lymphocytes (CTL). The importance of the class I pathway is emphasised by the remarkable strategies employed by different viruses to downregulate surface class I and avoid CTL recognition. The K3 gene product from Kaposi's sarcoma-associated herpesvirus (KSHV) is a viral ubiquitin E3 ligase which ubiquitinates and degrades cell surface MHC class I molecules.

View Article and Find Full Text PDF

RING domains are found in a large number of eukaryotic proteins. Most function as E3 ubiquitin-protein ligases, catalyzing the terminal step in the ubiquitination process. Structurally, these domains have been characterized as binding two zinc ions in a stable cross-brace motif.

View Article and Find Full Text PDF