Short-term mortality risk, which is indicative of individual frailty, serves as a marker for aging. Previous age clocks focused on predicting either chronological age or longer-term mortality. Aging clocks predicting short-term mortality are lacking and their algorithmic fairness remains unexamined.
View Article and Find Full Text PDFLancet Digit Health
November 2023
Background: Novel immunisation methods against respiratory syncytial virus (RSV) are emerging, but knowledge of risk factors for severe RSV disease is insufficient for optimal targeting of interventions against them. Our aims were to identify predictors for RSV hospital admission from registry-based data and to develop and validate a clinical prediction model to guide RSV immunoprophylaxis for infants younger than 1 year.
Methods: In this model development and validation study, we studied all infants born in Finland between June 1, 1997, and May 31, 2020, and in Sweden between June 1, 2006, and May 31, 2020, along with the data for their parents and siblings.
BACKGROUNDCardiorenal syndrome (CRS) - renal injury during heart failure (HF) - is linked to high morbidity. Whether circulating extracellular vesicles (EVs) and their RNA cargo directly impact its pathogenesis remains unclear.METHODSWe investigated the role of circulating EVs from patients with CRS on renal epithelial/endothelial cells using a microfluidic kidney-on-chip (KOC) model.
View Article and Find Full Text PDFBackground: Acute decompensation is associated with increased mortality in heart failure (HF) patients, though the underlying etiology remains unclear. Extracellular vesicles (EVs) and their cargo may mark specific cardiovascular physiologic states. We hypothesized that EV transcriptomic cargo, including long non-coding RNAs (lncRNAs) and mRNAs, is dynamic from the decompensated to recompensated HF state, reflecting molecular pathways relevant to adverse remodeling.
View Article and Find Full Text PDFObjectives: To recontact biobank participants and collect cognitive, behavioural and lifestyle information via a secure online platform.
Design: Biobank-based recontacting pilot study.
Setting: Three Finnish biobanks (Helsinki, Auria, Tampere) recruiting participants from February 2021 to July 2021.
Breast milk-derived extracellular vesicle (EV) miRNAs may program child health outcomes associated with maternal asthma and atopy. The authors investigated associations between maternal asthma/atopy and EV miRNAs in the Programming of Intergenerational Stress Mechanisms cohort. Breast milk-derived EV miRNAs collected 6.
View Article and Find Full Text PDFBackground: The heart grows in response to pathological and physiological stimuli. The former often precedes cardiomyocyte loss and heart failure; the latter paradoxically protects the heart and enhances cardiomyogenesis. The mechanisms underlying these differences remain incompletely understood.
View Article and Find Full Text PDFLife Sci Alliance
December 2021
Extracellular vesicles (EVs) mediate intercellular signaling by transferring their cargo to recipient cells, but the functional consequences of signaling are not fully appreciated. RBC-derived EVs are abundant in circulation and have been implicated in regulating immune responses. Here, we use a transgenic mouse model for fluorescence-based mapping of RBC-EV recipient cells to assess the role of this intercellular signaling mechanism in heart disease.
View Article and Find Full Text PDFRationale: Previous translational studies implicate plasma extracellular microRNA-30d (miR-30d) as a biomarker in left ventricular remodeling and clinical outcome in heart failure (HF) patients, although precise mechanisms remain obscure.
Objective: To investigate the mechanism of miR-30d-mediated cardioprotection in HF.
Methods And Results: In rat and mouse models of ischemic HF, we show that miR-30d gain of function (genetic, lentivirus, or agomiR-mediated) improves cardiac function, decreases myocardial fibrosis, and attenuates cardiomyocyte (CM) apoptosis.
Epigenetics
April 2021
Maternal stress is associated with adverse child health. Breast milk microRNAs encapsulated in extracellular vesicles (EVs) are involved in mother-infant biochemical communication during early-life programming. We leverage the PRogramming of Intergenerational Stress Mechanisms (PRISM) pregnancy cohort to investigate associations between maternal stress and breast milk EV-microRNAs.
View Article and Find Full Text PDFThe recent discovery of extracellular RNAs in blood, including RNAs in extracellular vesicles (EVs), combined with low-input RNA-sequencing advances have enabled scientists to investigate their role in human disease. To date, most studies have been focusing on small RNAs, and methodologies to optimize long RNAs measurement are lacking. We used plasma RNA to assess the performance of six long RNA sequencing methods, at two different sites, and we report their differences in reads (%) mapped to the genome/transcriptome, number of genes detected, long RNA transcript diversity, and reproducibility.
View Article and Find Full Text PDFInt J Mol Sci
August 2019
Thoracic aortic aneurysm (TAA) can lead to fatal complications such as aortic dissection. Since aneurysm dimension poorly predicts dissection risk, microRNAs (miRNAs) may be useful to diagnose or risk stratify TAA patients. We aim to identify miRNAs associated with TAA pathogenesis and that are possibly able to improve TAA diagnosis.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
November 2019
Context: Underlying mechanisms leading to gestational diabetes mellitus (GDM) are still under investigation, and it is unclear whether the placenta plays a role in triggering glucose intolerance or if its functions are modified in response to the hyperglycemia. Circulating miRNAs are involved in placental development and function and are encapsulated in extracellular vesicles (EVs).
Objective: To compare differential expression of miRNAs in circulating EVs in pregnancies complicated by GDM vs controls.
Poor reproducibility within and across studies arising from lack of knowledge regarding the performance of extracellular RNA (exRNA) isolation methods has hindered progress in the exRNA field. A systematic comparison of 10 exRNA isolation methods across 5 biofluids revealed marked differences in the complexity and reproducibility of the resulting small RNA-seq profiles. The relative efficiency with which each method accessed different exRNA carrier subclasses was determined by estimating the proportions of extracellular vesicle (EV)-, ribonucleoprotein (RNP)-, and high-density lipoprotein (HDL)-specific miRNA signatures in each profile.
View Article and Find Full Text PDFBisphenol A (BPA) is a widely used chemical that has been detected in follicular fluid and associated with adverse reproductive effects. Granulosa cells have an important role in follicular growth and oocyte maturation, however, little is known about the biological mechanisms of BPA toxicity on human granulosa cells. In this study, we exposed primary granulosa cells to different concentrations of BPA (0, 20, 200, 2000, and 20 000 ng/ml) and used quantitative polymerase chain reaction to measure the expression levels of miRNAs enriched in extracellular vesicles (EV-enriched miRNAs), and cellular levels of selected target genes of differentially expressed EV-enriched miRNAs.
View Article and Find Full Text PDFBackground: Several studies have shown that exposure to particulate matter (PM) may lead to increased systemic blood pressure, but the underlying biological mechanisms remain unknown. Emerging evidence shows that extracellular vesicle-enriched miRNAs (evmiRNAs) are associated with PM exposure and cardiovascular risk. In this study, we investigated the role of evmiRNAs in the association between PM and blood pressure, as well as their epigenetic regulation by DNA methylation.
View Article and Find Full Text PDFInfants born preterm are at increased risk of multiple morbidities and mortality. Why some women deliver preterm remains poorly understood. Prior studies have shown that cervical microRNA expression and DNA methylation are associated with the length of gestation.
View Article and Find Full Text PDFExtracellular RNA (exRNA) has emerged as an important transducer of intercellular communication. Advancing exRNA research promises to revolutionize biology and transform clinical practice. Recent efforts have led to cutting-edge research and expanded knowledge of this new paradigm in cell-to-cell crosstalk; however, gaps in our understanding of EV heterogeneity and exRNA diversity pose significant challenges for continued development of exRNA diagnostics and therapeutics.
View Article and Find Full Text PDFExtracellular RNA (exRNA) has recently expanded as a highly important area of study in biomarker discovery and cancer therapeutics. exRNA consists of diverse RNA subpopulations that are normally protected from degradation by incorporation into membranous vesicles or by lipid/protein association. They are found circulating in biofluids, and have proven highly promising for minimally invasive diagnostic and prognostic purposes, particularly in oncology.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are small bilayer lipid membrane vesicles that can be released by most cell types and detected in most body fluids. EVs exert key functions for intercellular communication via transferring their bioactive cargos to recipient cells or activating signaling pathways in target cells. Increasing evidence has shown the important regulatory effects of EVs in cardiovascular diseases (CVDs).
View Article and Find Full Text PDF