Publications by authors named "Pike See Cheah"

Clinacanthus nutans (C. nutans) Lindau, is classified as a top herb which are investigated for different biological activities like antioxidant, anti-inflammatory and vasodilatory effects. Hitherto, no dedicated study has been investigated on the role of C.

View Article and Find Full Text PDF

Emerging investigations have indicated that many plant polysaccharides may be beneficial for treating metabolic diseases. To date, the therapeutic efficacy and potential toxicity of polysaccharides extracted from () remain unexplored. This study investigated the in vivo acute and subacute oral toxicological profiles of the highest doses of bioactive polysaccharides (CNBP) extracted from the leaves using conventional toxicity methods.

View Article and Find Full Text PDF

The synaptic system is the core of the nervous system, coordinating neural communication. Synaptic dysfunctions, including deficits in synaptogenesis, neurotransmission and plasticity, underlie various neurological diseases. Repressor element-1 silencing transcription factor (REST), an epigenetic transcription factor, plays a crucial role in neurodevelopment and neuroprotection by fine-tuning the expression of neuronal genes.

View Article and Find Full Text PDF

Genetic diseases such as Neurofibromatosis type 1 (NF1) and Charcot-Marie Tooth disease involve Schwann cells (SCs) associated with peripheral nerves. Gene therapy using adeno-associated virus (AAV) vector mediated gene delivery is a promising strategy to treat these diseases. However, AAV-mediated transduction of SCs in vivo after intravascular delivery is relatively inefficient, with a lack of extensive characterization of different capsids to date.

View Article and Find Full Text PDF

Introduction: Accumulating evidence indicates that the increased presence of astrocytes is fundamentally linked to the neurological dysfunctions observed in individuals with Down syndrome (DS). REST (RE1-silencing transcription factor), as a chromatin modifier, regulates 15,450 genes in humans. REST is a key regulatory element that governs astrocyte differentiation, development, and the maintenance of their physiological functions.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) influences a considerable population globally. TBI notably impacts both fatalities and disabilities worldwide. The mortality related to TBI is a significant concern in public health, affecting persons across various age groups and demographic profiles.

View Article and Find Full Text PDF

Increasing shreds of evidence suggest that neurogenic-to-gliogenic shift may be critical to the abnormal neurodevelopment observed in individuals with Down syndrome (DS). REST, the Repressor Element-1 Silencing Transcription factor, regulates the differentiation and development of neural cells. Downregulation of REST may lead to defects in post-differentiation neuronal morphology in the brain of the DS fetal.

View Article and Find Full Text PDF
Article Synopsis
  • Down syndrome (DS) is linked to trisomy 21, leading to intellectual disabilities and increased oxidative stress, impacting neuronal health.
  • REST is a key protein involved in regulating genes related to DS neuropathology, and this study explores lithium’s effects on restoring REST levels in DS neurons.
  • Results indicated that lithium treatment restored nuclear REST levels and significantly reduced reactive oxygen species (ROS) in DS neurons, suggesting potential therapeutic benefits of lithium for improving neuronal function in Down syndrome.
View Article and Find Full Text PDF

Down syndrome (DS), characterised by compromised brain development and intellectual challenges, often manifests Alzheimer's disease (AD) -like symptoms. Utilising the Web of Science Core Collection (WOSCC) database from January 1, 2000, to July 31, 2023, we conducted a comprehensive bibliometric analysis using VOSviewer, CiteSpace, and the R package "bibliometrix." Analyses included co-authorship, co-citation, co-occurrence, cooperative network, reference, and keyword burst citation.

View Article and Find Full Text PDF
Article Synopsis
  • * The brain of individuals with DS displays various issues such as insulin resistance, mitochondrial dysfunction, oxidative stress, and the buildup of harmful proteins, which contribute to their unique brain pathology.
  • * Targeting the PI3K-Akt/mTOR signaling pathway could potentially delay early-onset Alzheimer's in DS patients, improving their quality of life by addressing the mechanisms of neurodegeneration.
View Article and Find Full Text PDF

In individuals with Down syndrome (DS), an additional HSA21 chromosome copy leads to the overexpression of a myriad of HSA21 genes, disrupting the transcription of the entire genome. This dysregulation in transcription and post-transcriptional modifications contributes to abnormal phenotypes across nearly all tissues and organs in DS individuals. The array of severe clinical symptoms associated with trisomy 21 poses a considerable challenge in the quest for a cure for DS.

View Article and Find Full Text PDF

JAK-STAT signaling cascade has emerged as an ideal target for the treatment of myeloproliferative diseases, autoimmune diseases, and neurological disorders. Ruxolitinib (Rux), is an orally bioavailable, potent and selective Janus-associated kinase (JAK) inhibitor, proven to be effective to target activated JAK-STAT pathway in the diseases previously described. Unfortunately, limited studies have investigated the potential cytotoxic profile of Rux on other cell populations within the heterogenous CNS microenvironment.

View Article and Find Full Text PDF

extracellular field potential recording is a commonly used technique in modern neuroscience research. The success of long-term electrophysiological recordings often depends on the quality of the implantation surgery. However, there is limited use of visually guided stereotaxic neurosurgery and the application of the eLab/ePulse electrophysiology system in rodent models.

View Article and Find Full Text PDF

Repressor element-1 silencing transcription factor (REST) or also known as neuron-restrictive silencing factor (NRSF), is the key initiator of epigenetic neuronal gene-expression modification. Identification of a massive number of REST-targeted genes in the brain signifies its broad involvement in maintaining the functionality of the nervous system. Additionally, REST plays a crucial role in conferring neuroprotection to the neurons against various stressors or insults during injuries.

View Article and Find Full Text PDF

Bipolar disorder (BD) is one of the major psychiatric diseases in which the impairment of mitochondrial functions has been closely connected or associated with the disease pathologies. Different lines of evidence of the close connection between mitochondria dysfunction and BD were discussed with a particular focus on (1) dysregulation of energy metabolism, (2) effect of genetic variants, (3) oxidative stress, cell death and apoptosis, (4) dysregulated calcium homeostasis and electrophysiology, and (5) current as well as potential treatments targeting at restoring mitochondrial functions. Currently, pharmacological interventions generally provide limited efficacy in preventing relapses or recovery from mania or depression episodes.

View Article and Find Full Text PDF

Down syndrome (DS) is the most frequently diagnosed chromosomal disorder of chromosome 21 (HSA21) aneuploidy, characterized by intellectual disability and reduced lifespan. The transcription repressor, Repressor Element-1 Silencing Transcription factor (REST), which acts as an epigenetic regulator, is a crucial regulator of neuronal and glial gene expression. In this study, we identified and investigated the role of REST-target genes in human brain tissues, cerebral organoids, and neural cells in Down syndrome.

View Article and Find Full Text PDF

Mitochondrial dysfunctions have been described in Down syndrome (DS) caused by either partial or full trisomy of chromosome 21 (HSA21). Mitochondria play a crucial role in various vital functions in eukaryotic cells, especially in energy production, calcium homeostasis and programmed cell death. The function of mitochondria is primarily regulated by genes encoded in the mitochondrion and nucleus.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used a gene replacement strategy involving an adeno-associated virus (AAV1) to deliver the merlin protein directly into tumor cells in a mouse model, successfully restoring its function.
  • * This treatment resulted in significant tumor regression over 10 weeks, showing decreased cell division and increased cell death, indicating a promising approach for NF2 therapy.
View Article and Find Full Text PDF

Non-coding RNAs, including microRNAs (miRNAs), support the progression of glioma. miR-21 is a small, non-coding transcript involved in regulating gene expression in multiple cellular pathways, including the regulation of proliferation. High expression of miR-21 has been shown to be a major driver of glioma growth.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is one of the most common, most formidable, and deadliest malignant types of primary astrocytoma with a poor prognosis. At present, the standard of care includes surgical tumor resection, followed by radiation therapy concomitant with chemotherapy and temozolomide. New developments and significant advances in the treatment of GBM have been achieved in recent decades.

View Article and Find Full Text PDF

Adeno-associated virus (AAV)-based gene therapy is gaining popularity owing to its excellent safety profile and effective therapeutic outcomes in a number of diseases. Intravenous (IV) injection of AAV into the tail vein, facial vein and retro-orbital (RO) venous sinus have all been useful strategies to infuse the viral vector systemically. However, tail vein injection is technically challenging in juvenile mice, and injection at young ages (≤ postnatal day-(P)21) is essentially impossible.

View Article and Find Full Text PDF

Ruxolitinib is the first janus kinase 1 (JAK1) and JAK2 inhibitor that was approved by the United States Food and Drug Administration (FDA) agency for the treatment of myeloproliferative neoplasms. The drug targets the JAK/STAT signalling pathway, which is critical in regulating the gliogenesis process during nervous system development. In the study, we assessed the effect of non-maternal toxic dosages of ruxolitinib (0-30 mg/kg/day between E7.

View Article and Find Full Text PDF