In vitro fertilization (IVF) faces challenges in evaluating embryo quality and in determining the genetic health of embryos. Key biomarkers in the culture medium, including nucleic acids and proteins, offer promising avenues for noninvasive assessment. However, small sample volumes, low biomolecule concentrations, and potential contaminants complicate the reliable detection of genetic indicators.
View Article and Find Full Text PDFDirectly detecting biomarkers in liquid biopsy for diagnosis and personalized treatment plays a crucial role in managing cancer relapse and increasing survival rates. Typically, the standard analysis of circulating tumour DNA requires lengthy isolation, extraction, and amplification steps, leading to sample contamination, longer turnaround time and higher assay costs. Surface plasmon resonance is an emerging and promising technology for rapid and real-time dynamic biomarker monitoring in liquid biopsy.
View Article and Find Full Text PDFDiabetes mellitus is a metabolic disease characterized by hyperglycemia, which can be counteracted by the inhibition of α-glucosidase (α-Glu) and α-amylase (α-Amy), enzymes responsible for the hydrolysis of carbohydrates. In recent decades, many natural compounds and their bioinspired analogues have been studied as α-Glu and α-Amy inhibitors. However, no studies have been devoted to the evaluation of α-Glu and α-Amy inhibition by the neolignan obovatol (1).
View Article and Find Full Text PDFAnal Chim Acta
December 2023
Antifouling coatings are critically necessary for optical biosensors for various analytical application sectors, from medical diagnostics to foodborne pathogen detection. They help avoid non-specific protein/cell attachment on the active biosensor surface and catch the analytes directly in the complex media. Advances in antifouling plasmonic surfaces have been mainly focused on detecting clinical biomarkers in real biofluids, whereas developing antifouling coatings for direct analysis of analytes in complex media has been scarcely investigated for food quality control and safety.
View Article and Find Full Text PDFSurface Plasmon Resonance based-sensors are promising tools for precision diagnostics as they can provide tests useful for early and, whenever possible, non-invasive disease detection and monitoring. The design of novel, robust and effective interfaces enabling the sensing of a variety of molecular interactions in a highly selective and sensitive manner is a necessary step to obtain both accurate and reliable detection by SPR. This review covers the recent research efforts in this area, specifically emphasizing well-designed interfaces and applications in real-life samples.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2022
Extracellular miRNAs are promising targets for developing new assays for the early diagnosis and prognosis of diseases based on liquid biopsy. The detection of miRNAs in liquid biopsies is challenged by their short sequence length, low concentration, and interferences with bodily fluid components. Isothermal circular strand displacement polymerization has emerged as a convenient method for nucleic acid amplification and detection.
View Article and Find Full Text PDFAlthough many potential applications in early clinical diagnosis have been proposed, the use of a surface plasmon resonance imaging (SPRI) technique for non-invasive prenatal diagnostic approaches based on maternal blood analysis is confined. Here, we report a nanoparticle-enhanced SPRI strategy for a non-invasive prenatal fetal sex determination based on the detection of a Y-chromosome specific sequence (single-gene SRY) in cell-free fetal DNA from maternal plasma. The SPR assay proposed here allows for detection of male DNA in mixtures of 2.
View Article and Find Full Text PDFStrategies to develop antifouling surface coatings are crucial for surface plasmon resonance (SPR) sensing in many analytical application fields, such as detecting human disease biomarkers for clinical diagnostics and monitoring foodborne pathogens and toxins involved in food quality control. In this review, firstly, we provide a brief discussion with considerations about the importance of adopting appropriate antifouling materials for achieving excellent performances in biosensing for food safety and clinical diagnosis. Secondly, a non-exhaustive landscape of polymeric layers is given in the context of surface modification and the mechanism of fouling resistance.
View Article and Find Full Text PDFStandard protocols for the analysis of circulating tumor DNA (ctDNA) include the isolation of DNA from the patient's plasma and its amplification and analysis in buffered solutions. The application of such protocols is hampered by several factors, including the complexity and time-constrained preanalytical procedures, risks for sample contamination, extended analysis time, and assay costs. A recently introduced nanoparticle-enhanced surface plasmon resonance imaging-based assay has been shown to simplify procedures for the direct detection of tumor DNA in the patient's plasma, greatly simplifying the cumbersome preanalytical phase.
View Article and Find Full Text PDFNucleic acid nanotechnology designs and develops synthetic nucleic acid strands to fabricate nanosized functional systems. Structural properties and the conformational polymorphism of nucleic acid sequences are inherent characteristics that make nucleic acid nanostructures attractive systems in biosensing. This review critically discusses recent advances in biosensing derived from molecular beacon and DNA origami structures.
View Article and Find Full Text PDFBiosens Bioelectron
December 2020
RAS mutations in the blood of colorectal cancer (CRC) patients are emerging as biomarkers of acquired resistance to Epidermal Growth Factor Receptor therapy. Unfortunately, reliable assays granting fast, real-time monitoring of treatment response, capable of refining retrospective, tissue-based analysis, are still needed. Recently, several methods for detecting blood RAS mutations have been proposed, generally relying on multi-step and PCR-based, time-consuming and cost-ineffective procedures.
View Article and Find Full Text PDFBiomarker-based cancer analysis has great potential to lead to a better understanding of disease at the molecular level and to improve early diagnosis and monitoring. Unlike conventional tissue biopsy, liquid biopsy allows the detection of a large variety of circulating biomarkers, such as microRNA (miRNA), exosomes, circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and proteins, in an easily accessible and minimally invasive way. In this review, we describe and evaluate the relevance and applicability of surface plasmon resonance (SPR) and localized SPR (LSPR)-based platforms for the detection of different classes of cancer biomarkers in liquid biopsy samples.
View Article and Find Full Text PDFAnal Bioanal Chem
July 2019
MicroRNAs (miRNAs) present several features that make them more difficult to analyze than DNA and RNA. For this reason, efforts have been made in recent years to develop innovative platforms for the efficient detection of microRNAs. The aim of this review is to provide an overview of the sensing strategies able to deal with drawbacks and pitfalls related to microRNA detection.
View Article and Find Full Text PDFThe monitoring of DNA and RNA biomarkers freely circulating in the blood constitutes the basis of innovative cancer detection methods based on liquid biopsy. Such methods are expected to provide new opportunities for a better understanding of cancer disease at the molecular level, thus contributing to improved patient outcomes. Advanced biosensors can advance possibilities for cancer-related nucleic acid biomarkers detection.
View Article and Find Full Text PDFDroplet microfluidics combined with the isothermal circular strand displacement polymerization (ICSDP) represents a powerful new technique to detect both single-stranded DNA and microRNA sequences. The method here described helps in overcoming some drawbacks of the lately introduced droplet polymerase chain reaction (PCR) amplification when implemented in microfluidic devices. The method also allows the detection of nanoliter droplets of nucleic acids sequences solutions, with a particular attention to microRNA sequences that are detected at the picomolar level.
View Article and Find Full Text PDFThe analytical methods that are usually applied to determine the compositions of inks from ancient manuscripts usually focus on inorganic components, as in the case of iron gall ink. In this work, we describe the use of atmospheric pressure/matrix-assisted laser desorption ionization-mass spectrometry (AP/MALDI-MS) as a spatially resolved analytical technique for the study of the organic carbonaceous components of inks used in handwritten parts of ancient books for the first time. Large polycyclic aromatic hydrocarbons (L-PAH) were identified in situ in the ink of XVII century handwritten documents.
View Article and Find Full Text PDFBeilstein J Nanotechnol
January 2017
Gold nanoparticles (AuNPs) exhibit unique properties that can be modulated through a tailored surface functionalization, enabling their targeted use in biochemical sensing and medical diagnostics. In particular, streptavidin-modified AuNPs are increasingly used for biosensing purposes. We report here a study of AuNPs surface-functionalized with streptavidin-biotinylated oligonucleotide, focussing on the role played by the oligonucleotide probes in the stabilization/destabilization of the functionalized nanoparticle dispersion.
View Article and Find Full Text PDFTransition metal ion complexes of a number of chelators have been widely investigated due to their biological properties. The sugar conjugation of metal complexes has resulted in improved properties of the systems, such as solubility and lectin recognition. In this paper, we report the synthesis, the characterization of new glucose and galactose conjugates of 1,4,8,11-tetraazacyclotetradecane (cyclam) and their Cu(II) complexes.
View Article and Find Full Text PDFNucleic-acid amplification is a crucial step in nucleic-acid-sequence-detection assays. The use of digital microfluidic devices to miniaturize amplification techniques reduces the required sample volume and the analysis time and offers new possibilities for process automation and integration in a single device. The recently introduced droplet polymerase-chain-reaction (PCR) amplification methods require repeated cycles of two or three temperature-dependent steps during the amplification of the nucleic-acid target sequence.
View Article and Find Full Text PDFSurface plasmon resonance imaging (SPRI) is a powerful tool for simple, fast and cheap nucleic acid detection. Great efforts have been made during the last decade with the aim of developing even more sensitive and specific SPRI-based methods to be used for the direct detection of DNA and RNA. Here, after a description of the fundamentals of SPRI, the state of the art of recent platform and assay developments is presented, with special attention given to advances in SPRI signal enhancement procedures.
View Article and Find Full Text PDFThe combined use of surface plasmon resonance (SPR) and modified or mimic oligonucleotides have expanded diagnostic capabilities of SPR-based biosensors and have allowed detailed studies of molecular recognition processes. This review summarizes the most significant advances made in this area over the past 15 years. Functional and conformationally restricted DNA analogs (e.
View Article and Find Full Text PDFThe use of droplet-based microfluidics and peptide nucleic acid molecular beacons for the detection of polymerase chain reaction (PCR)-amplified DNA sequences within nanoliter-sized droplets is described in this work. The nanomolar-attomolar detection capabilities of the method were preliminarily tested by targeting two different single-stranded DNA sequences from the genetically modified Roundup Ready soybean and the Olea europaea genomes and detecting the fluorescence generated by peptide nucleic acid molecular beacons with fluorescence microscopy. Furthermore, the detection of 10 nM solutions of PCR amplicon of DNA extracted from leaves of O.
View Article and Find Full Text PDFUltrasensitive detection protocols not requiring polymerase chain reaction (PCR)-mediated target DNA amplification are expected to significantly improve our possibilities in several research and diagnostic applications for which minute cell quantities are available. For this reason we have tested a nanoparticle-enhanced surface plasmon resonance imaging (SPRI) sensing strategy to detect point mutations in nonamplified genomic DNA. We have used genomic DNAs, not subject to costly, time-consuming, and prone to contamination PCR-based amplification procedures, obtained from both healthy individuals and homozygous or heterozygous patients affected by β-thalassemia, in order to demonstrate the specificity and the sensitivity of the described sensing strategy.
View Article and Find Full Text PDF