Fervidibacter sacchari is an aerobic hyperthermophile belonging to the phylum Armatimonadota that degrades a variety of polysaccharides. Its genome encodes 117 enzymes with one or more annotated glycoside hydrolase (GH) domain, but the roles of these putative GHs in polysaccharide catabolism are poorly defined. Here, we describe one F.
View Article and Find Full Text PDFMicrobiol Resour Announc
August 2025
Genome-wide binding sites of 44 putative transcription factors (TFs) from DSM12444 were analyzed using DNA affinity purification sequencing. We report that 32 of these TFs have at least one area of enrichment. These data will help better understand aromatic metabolism and other features of biology.
View Article and Find Full Text PDFFluorinated compounds are used for agrochemical, pharmaceutical, and numerous industrial applications, resulting in global contamination. In many molecules, fluorine is incorporated to enhance the half-life and improve bioavailability. Fluorinated compounds enter the human body through food, water, and xenobiotics including pharmaceuticals, exposing gut microbes to these substances.
View Article and Find Full Text PDFCRISPR-based high-throughput genome-wide loss-of-function screens are a valuable approach to functional genetics and strain engineering. The yeast Komagataella phaffii is a host of particular interest in the biopharmaceutical industry and as a metabolic engineering host for proteins and metabolites. Here, we design and validate a highly active 6-fold coverage genome-wide sgRNA library for this biotechnologically important yeast containing 30,848 active sgRNAs targeting over 99% of its coding sequences.
View Article and Find Full Text PDFThe aerobic hyperthermophile catabolizes diverse polysaccharides and is the only cultivated member of the class within the phylum . It encodes 117 putative glycoside hydrolases (GHs), including two from GH family 50 (GH50). In this study, we expressed, purified, and functionally characterized one of these GH50 enzymes, Fsa16295Glu.
View Article and Find Full Text PDFMany pests and pathogens threaten Eucalyptus plantations. The study of defense responses in this economically important wood and fiber crop enables the discovery of novel pathways and genes, which may be adopted to improve resistance. Various functional genomics experiments have been conducted in Eucalyptus-biotic stress interactions following the availability of the genome, however, comparisons between these studies were limited largely due to a lack of comparative tools.
View Article and Find Full Text PDFThe molecular mechanisms underlying mycorrhizal symbioses, the most ubiquitous and impactful mutualistic plant-microbial interaction in nature, are largely unknown. Through genetic mapping, resequencing and molecular validation, we demonstrate that a G-type lectin receptor-like kinase (lecRLK) mediates the symbiotic interaction between Populus and the ectomycorrhizal fungus Laccaria bicolor. This finding uncovers an important molecular step in the establishment of symbiotic plant-fungal associations and provides a molecular target for engineering beneficial mycorrhizal relationships.
View Article and Find Full Text PDFFront Microbiol
March 2019
Ecto- and endo-mycorrhizal colonization of roots have a positive impact on the overall tree health and growth. A complete molecular understanding of these interactions will have important implications for increasing agricultural or forestry sustainability using plant:microbe-based strategies. These beneficial associations entail extensive morphological changes orchestrated by the genetic reprogramming in both organisms.
View Article and Find Full Text PDFCrassulacean acid metabolism (CAM) improves photosynthetic efficiency under limited water availability relative to C photosynthesis. It is widely accepted that CAM plants have evolved from C plants and it is hypothesized that CAM is under the control of the internal circadian clock. However, the role that the circadian clock plays in the evolution of CAM is not well understood.
View Article and Find Full Text PDFA characteristic feature of plant cells is the ability to form callus from parenchyma cells in response to biotic and abiotic stimuli. Tissue culture propagation of recalcitrant plant species and genetic engineering for desired phenotypes typically depends on efficient in vitro callus generation. Callus formation is under genetic regulation, and consequently, a molecular understanding of this process underlies successful generation for propagation materials and/or introduction of genetic elements in experimental or industrial applications.
View Article and Find Full Text PDFCrassulacean acid metabolism (CAM) is a water-use efficient adaptation of photosynthesis that has evolved independently many times in diverse lineages of flowering plants. We hypothesize that convergent evolution of protein sequence and temporal gene expression underpins the independent emergences of CAM from C photosynthesis. To test this hypothesis, we generate a de novo genome assembly and genome-wide transcript expression data for Kalanchoë fedtschenkoi, an obligate CAM species within the core eudicots with a relatively small genome (~260 Mb).
View Article and Find Full Text PDFNon-coding RNAs (ncRNAs), that is, RNAs not translated into proteins, are crucial regulators of a variety of biological processes in plants. While protein-encoding genes have been relatively well-annotated in sequenced genomes, accounting for a small portion of the genome space in plants, the universe of plant ncRNAs is rapidly expanding. Recent advances in experimental and computational technologies have generated a great momentum for discovery and functional characterization of ncRNAs.
View Article and Find Full Text PDFDuring symbiosis, organisms use a range of metabolic and protein-based signals to communicate. Of these protein signals, one class is defined as 'effectors', i.e.
View Article and Find Full Text PDFResearch toward renewable and sustainable energy has identified specific terpenes capable of supplementing or replacing current petroleum-derived fuels. Despite being naturally produced and stored by many plants, there are few examples of commercial recovery of terpenes from plants because of low yields. Plant terpene biosynthesis is regulated at multiple levels, leading to wide variability in terpene content and chemistry.
View Article and Find Full Text PDFDUF1218 is a land plant-specific innovation and has previously been shown to be associated with cell wall biology, vasculature patterning and abiotic/biotic stress response. The Arabidopsis genome encodes 15 members, two of which (At1g31720 and At4g27435) are preferentially expressed in the secondary cell wall depositing inflorescence stems. To further our understanding of the roles of DUF1218-containing proteins in secondary cell wall biology, we functionally characterized At1g31720 (herein referred to as MODIFYING WALL LIGNIN-1 or MWL-1).
View Article and Find Full Text PDFPlant biomass, as an abundant renewable carbon source, is a promising alternative to fossil fuels. However, the enzymes most commonly used for depolymerization of lignocellulosic biomass are expensive, and the development of cost-effective alternative conversion technologies would be desirable. One possible option is the heterologous expression of genes encoding lignocellulose-digesting enzymes in plant tissues.
View Article and Find Full Text PDFLignocellulosic biomass is an important feedstock for the pulp and paper industry as well as emerging biofuel and biomaterial industries. However, the recalcitrance of the secondary cell wall to chemical or enzymatic degradation remains a major hurdle for efficient extraction of economically important biopolymers such as cellulose. It has been estimated that approximately 10-15% of about 27,000 protein-coding genes in the Arabidopsis genome are dedicated to cell wall development; however, only about 130 Arabidopsis genes thus far have experimental evidence validating cell wall function.
View Article and Find Full Text PDF