Publications by authors named "Revati S Dewal"

Background: Metabolic dysfunction-associated steatotic liver disease (MASLD), the hepatic manifestation of obesity and type 2 diabetes, can progress to metabolic dysfunction-associated steatohepatitis and fibrosis. MASLD is characterized by elevated hepatic lipid accumulation (steatosis) and insulin resistance. The ketogenic diet (KD), a high-fat, low-carbohydrate diet, induces hepatic insulin resistance and steatosis in animal models through unknown mechanisms.

View Article and Find Full Text PDF

Aging poses significant challenges to cardiovascular health necessitating novel therapeutic approaches. This study investigates the potential of the brown adipose tissue (BAT) derived lipokine 12,13-diHOME to mitigate age-induced impairments in cardiovascular function. Analysis of human and rodent plasma signaling lipids reveals a decline in 12,13-diHOME levels with age.

View Article and Find Full Text PDF
Article Synopsis
  • * Research using single-nucleus RNA sequencing revealed that these distinct beige adipocyte subpopulations, FC-adipocytes and UCP1-beige adipocytes, can coexist and function independently.
  • * FC-adipocytes are significantly active in metabolizing energy without UCP1 and play a crucial role in regulating overall energy balance, glucose metabolism, and obesity resistance in humans.
View Article and Find Full Text PDF

Adipose tissue in its different forms: white, brown, and beige, while essential in day-to-day bodily functions, leads to several disorders when present in overabundance, including obesity and type-2 diabetes. Adipose tissue function/dysfunction is largely mediated by the diversity of its cell composition, within adipocytes and cells in its stromal fraction. Owing to its heterogeneous nature, recent studies have focused on intercalating the effects of cellular diversity with adipose tissue function, particularly by employing sequencing technologies.

View Article and Find Full Text PDF

Decreased adipose tissue regulatory T cells contribute to insulin resistance in obese mice, however, little is known about the mechanisms regulating adipose tissue regulatory T cells numbers in humans. Here we obtain adipose tissue from obese and lean volunteers. Regulatory T cell abundance is lower in obese vs.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is the most common sustained arrhythmia, with growing evidence identifying obesity as an important risk factor for the development of AF. Although defective atrial myocyte excitability due to stress-induced remodeling of ion channels is commonly observed in the setting of AF, little is known about the mechanistic link between obesity and AF. Recent studies have identified increased cardiac late sodium current (I) downstream of calmodulin-dependent kinase II (CaMKII) activation as an important driver of AF susceptibility.

View Article and Find Full Text PDF

Background: Brown adipose tissue (BAT) is an important tissue for thermogenesis, making it a potential target to decrease the risks of obesity, type 2 diabetes, and cardiovascular disease, and recent studies have also identified BAT as an endocrine organ. Although BAT has been implicated to be protective in cardiovascular disease, to this point there are no studies that identify a direct role for BAT to mediate cardiac function.

Methods: To determine the role of BAT on cardiac function, we utilized a model of BAT transplantation.

View Article and Find Full Text PDF

Obesity is a disease that results from an imbalance between energy intake and energy expenditure. Brown adipose tissue (BAT) is a potential therapeutic target to improve the comorbidities associated with obesity due to its inherent thermogenic capacity and its ability to improve glucose metabolism. Multiple studies have shown that activation of BAT using either pharmacological treatments or cold exposure had an acute effect to increase metabolic function and reduce adiposity.

View Article and Find Full Text PDF

Exercise affects whole-body metabolism through adaptations to various tissues, including adipose tissue (AT). Recent studies investigated exercise-induced adaptations to AT, focusing on inguinal white adipose tissue (WAT), perigonadal WAT, and interscapular brown adipose tissue (iBAT). Although these AT depots play important roles in metabolism, they account for only ∼50% of the AT mass in a mouse.

View Article and Find Full Text PDF

Physical exercise leads to beneficial effects in numerous tissues and organ systems and offers protection against obesity and type 2 diabetes. Recent studies have investigated the role of exercise on brown adipose tissue (BAT) and white adipose tissue (WAT), and have indicated marked adaptations to each tissue with exercise. Studies investigating the effects of exercise on BAT have produced conflicting results, with some showing an increase in the thermogenic activity of BAT and some demonstrating a decrease in the thermogenic activity of BAT.

View Article and Find Full Text PDF