Background & Aims: Glucagon (GCG) analogues are gaining attention as promising components in incretin-based therapeutics for obesity and metabolic dysfunction-associated steatohepatitis. However, the biological effects of chronic GCG treatment, particularly the molecular underpinnings of GCG-induced energy expenditure and lipid metabolism, remain poorly defined.
Methods: We utilized a long-acting GCG analogue (LA-GCG) in conjunction with hepatic and adipose glucagon receptor (GCGR) knockout mouse models.
Charting out personalized and/or optimized diets offers new opportunities in the field of food science, although with inherent challenges. Starch-based foods are a major component of daily energy intake in humans. In addition to being rich in starch, starchy foods also contain a multitude of bioactive substances (e.
View Article and Find Full Text PDFFutile cycles are biological phenomena where two opposing biochemical reactions run simultaneously, resulting in a net energy loss without appreciable productivity. Such a state was presumed to be a biological aberration and thus deemed an energy-wasting "futile" cycle. However, multiple pieces of evidence suggest that biological utilities emerge from futile cycles.
View Article and Find Full Text PDFIn the healthy state, the fat stored in our body isn't just inert. Rather, it is dynamically mobilized to maintain an adequate concentration of fatty acids (FAs) in our bloodstream. Our body tends to produce excess FAs to ensure that the FA availability is not limiting.
View Article and Find Full Text PDFIn this Correspondence, A. Sharma & C. Wolfrum report that DGAT1/2 pharmacological inhibition at post-absorptive phase in mice leads to increased fatty acid oxidation and reduced plasma fatty acid levels, which could open new therapeutic avenues to avoid GI complications observed in clinical trials.
View Article and Find Full Text PDFObjective: Emerging evidence suggest the existence of constant basal lipolysis and re-esterification of a substantial fraction of thus liberated fatty acids. In stimulated lipolysis, the re-esterification is proposed to be a protective mechanism against lipotoxicity; however, the role of the lipolysis coupled to re-esterification under basal conditions has not been deciphered.
Methods: We used adipocytes (in vitro differentiated brown and white adipocytes derived from a cell line or primary SVF culture) to study the effect of inhibition of re-esterification by pharmacological DGAT1 and DGAT2 inhibitors alone or in combination.
As the requirements of modern society change, the demand for versatile food, which is not only nutritious but easily processed and preserved, is increasing. Chestnut, with vast economic value, is important in daily life and research. Compositionally, besides starch, chestnuts are also rich in protein, essential lipids, and various other compounds that scarce in other popular nuts.
View Article and Find Full Text PDFSecretagogin (SCGN) is a calcium-sensor protein with a regulatory role in glucose metabolism and the secretion of several peptide hormones. Many, but not all, functions of SCGN can be explained by its intracellular manifestation. Despite early data on SCGN secretion, the secretory mechanism, biological fate, physiological implications and trans-cellular signalling of extracellular SCGN remain unknown.
View Article and Find Full Text PDFWhen normalized to volume, adipose tissue is comprised mainly of large lipid metabolizing and storing cells called adipocytes. Strikingly, the numerical representation of non-adipocytes, composed of a wide variety of cell types found in the so-called stromal vascular fraction (SVF), outnumber adipocytes by far. Besides its function in energy storage, adipose tissue has emerged as a versatile organ that regulates systemic metabolism and has therefore constituted an attractive target for the treatment of metabolic diseases.
View Article and Find Full Text PDFSecretagogin (SCGN) is a β-cell enriched, secretory/cytosolic Ca-binding protein with unknown secretory regulation and functions. Recent findings suggest that SCGN deficiency correlates with compromised insulin response and diabetes. However, the (patho)physiological SCGN-insulin nexus remains unexplored.
View Article and Find Full Text PDFSecretagogin (SCGN) is a secreted calcium sensor that has emerged as a potential multifunctional protein of neuroendocrine cells. A significantly reduced level of expression of SCGN has been reported in the hippocampus of a mouse model of Alzheimer's disease (AD) and in Parkinson's patients, although the biochemical implications and mechanistic underpinnings of the altered SCGN expression in neurodegenerative diseases remain unknown. We have pursued the interaction of SCGN with α-synuclein that we discovered in impartial pull-down analyses to decode the SCGN interactome.
View Article and Find Full Text PDFTrends Endocrinol Metab
April 2019
Secretagogin (SCGN) is a calcium sensor protein enriched in neuroendocrine cells in general and pancreatic β-cells in particular. SCGN regulates insulin secretion through several Ca-dependent interactions. Recent studies implicate SCGN in the β-cell physiology and extracellular insulin function, making it an intriguing candidate in diabetes research.
View Article and Find Full Text PDFSecretagogin (SCGN) has recently gained attention due to its modulatory effect on insulin/CRH secretion and function. However, a large pool of speculated SCGN functions remains unexplored. A major deficiency is the lack of knowledge about the biological functions of extracellular SCGN.
View Article and Find Full Text PDFSmooth, uniform mixed valance vanadium oxide (VO) thin films are grown on flexible, transparent Kapton and opaque Al6061 substrates by the spin coating technique at a constant rpm of 3000. Various elements , F, Ti, Mo and W are utilized for doping and co-doping of VO. All the spin coated films are heat treated in a vacuum.
View Article and Find Full Text PDFSecretagogin (SCGN), a multifunctional, Ca binding, regulatory protein, known to regulate insulin release, has recently been implicated in the control of stress-related corticotropin-releasing hormone (CRH) secretion. Localization of SCGN to multiple intracellular (such as cytosol, nucleus, and endoplasmic reticulum) and extracellular sites appears to provide multifunctional capabilities; however, the structural elements conferring such a widespread cellular distribution to SCGN remain unidentified. We report that the spatial and functional attributes of SCGN plausibly originate from the interplay between Ca and its redox state.
View Article and Find Full Text PDFVanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g.
View Article and Find Full Text PDFCentrins are acidic proteins, present in all eukaryotes to perform imperative roles in centrosome positioning and segregation. Existing methods for the purification of centrins for biophysical studies involves either multiple steps or yields protein with an affinity tag, which pins additional tag-cleavage step. Therefore, we have made an attempt to develop a simple and single step method for protein purification.
View Article and Find Full Text PDFSecretagogin (SCGN), a hexa EF-hand calcium-binding protein, is highly expressed in the endocrine cells (especially in pancreatic islets) and in restricted neuronal sub-populations, albeit at comparatively low level. Since SCGN is predicted to be a potential neuroendocrine marker in carcinoid tumors of lung and gastrointestinal tract, it is of paramount importance to understand the features of this protein in different environment for assigning its crucial functions in different tissues and under pathophysiological conditions. To score out the limitation of protein for in vitro studies, we report a one-step, high purity and high level bacterial purification of secretagogin by refolding from the inclusion bodies yielding about 40mg protein per litre of bacterial culture.
View Article and Find Full Text PDFMany members of the neuronal calcium sensor (NCS) protein family have a striking coexistence of two characteristics, that is, N-myristoylation and the cryptic EF-1 motif. We investigated the rationale behind this correlation in neuronal calcium sensor-1 (NCS-1) by restoring Ca(2+) binding ability of the disabled EF-1 loop by appropriate mutations. The concurrence of canonical EF-1 and N-myristoylation considerably decreased the overall Ca(2+) affinity, conformational flexibility, and functional activation of downstream effecter molecules (i.
View Article and Find Full Text PDF