Publications by authors named "Reid Akana"

In a recent household transmission study of SARS-CoV-2, we found extreme differences in SARS-CoV-2 viral loads among paired saliva, anterior nares swab (ANS), and oropharyngeal swab specimens collected from the same time point. We hypothesized these differences may hinder low-analytical-sensitivity assays (including antigen rapid diagnostic tests [Ag-RDTs]) by using a single specimen type (e.g.

View Article and Find Full Text PDF

SARS-CoV-2 viral-load measurements from a single-specimen type are used to establish diagnostic strategies, interpret clinical-trial results for vaccines and therapeutics, model viral transmission, and understand virus-host interactions. However, measurements from a single-specimen type are implicitly assumed to be representative of other specimen types. We quantified viral-load timecourses from individuals who began daily self-sampling of saliva, anterior-nares (nasal), and oropharyngeal (throat) swabs before or at the incidence of infection with the Omicron variant.

View Article and Find Full Text PDF

During a household-transmission field study using COVID-19 antigen rapid diagnostic tests (Ag-RDT), a common test strip lot was identified among 3 participants with false-positive results. In blinded laboratory evaluation, this lot exhibited a significantly higher false-positive rate than other lots. Because a positive Ag-RDT result often prompts action, reducing lot-specific false positives can maintain confidence and actionability of true-positive Ag-RDT results.

View Article and Find Full Text PDF

Optimizing specimen collection methods to achieve the most reliable SARS-CoV-2 detection for a given diagnostic sensitivity would improve testing and minimize COVID-19 outbreaks. From September 2020 to April 2021, we performed a household-transmission study in which participants self-collected specimens every morning and evening throughout acute SARS-CoV-2 infection. Seventy mildly symptomatic participants collected saliva, and of those, 29 also collected nasal swab specimens.

View Article and Find Full Text PDF

Early detection of SARS-CoV-2 infection is critical to reduce asymptomatic and presymptomatic transmission, curb the spread of variants, and maximize treatment efficacy. Low-analytical-sensitivity nasal-swab testing is commonly used for surveillance and symptomatic testing, but the ability of these tests to detect the earliest stages of infection has not been established. In this study, conducted between September 2020 and June 2021 in the greater Los Angeles County, California, area, initially SARS-CoV-2-negative household contacts of individuals diagnosed with COVID-19 prospectively self-collected paired anterior-nares nasal-swab and saliva samples twice daily for viral-load quantification by high-sensitivity reverse-transcription quantitative PCR (RT-qPCR) and digital-RT-PCR assays.

View Article and Find Full Text PDF

Early detection of SARS-CoV-2 infection is critical to reduce asymptomatic and pre-symptomatic transmission, curb the spread of variants by travelers, and maximize treatment efficacy. Low-sensitivity nasal-swab testing (antigen and some nucleic-acid-amplification tests) is commonly used for surveillance and symptomatic testing, but the ability of low-sensitivity nasal-swab tests to detect the earliest stages of infection has not been established. In this case-ascertained study, initially-SARS-CoV-2-negative household contacts of individuals diagnosed with COVID-19 prospectively self-collected paired anterior-nares nasal-swab and saliva samples twice daily for viral-load quantification by high-sensitivity RT-qPCR and digital-RT-PCR assays.

View Article and Find Full Text PDF

Transmission of SARS-CoV-2 in community settings often occurs before symptom onset, therefore testing strategies that can reliably detect people in the early phase of infection are urgently needed. Early detection of SARS-CoV-2 infection is especially critical to protect vulnerable populations who require frequent interactions with caretakers. Rapid COVID-19 tests have been proposed as an attractive strategy for surveillance, however a limitation of most rapid tests is their low sensitivity.

View Article and Find Full Text PDF

Background: Respiratory tract infections represent a significant public health risk, and timely and accurate detection of bacterial infections facilitates rapid therapeutic intervention. Furthermore, monitoring the progression of infections after intervention enables 'course correction' in cases where initial treatments are ineffective, avoiding unnecessary drug dosing that can contribute to antibiotic resistance. However, current diagnostic and monitoring techniques rely on non-specific or slow readouts, such as radiographic imaging and sputum cultures, which fail to specifically identify bacterial infections and take several days to identify optimal antibiotic treatments.

View Article and Find Full Text PDF

There is a need for large-scale, longitudinal studies to determine the mechanisms by which the gut microbiome and its interactions with the host affect human health and disease. Current methods for profiling the microbiome typically utilize next-generation sequencing applications that are expensive, slow, and complex. Here, we present a synthetic biology platform for affordable, on-demand, and simple analysis of microbiome samples using RNA toehold switch sensors in paper-based, cell-free reactions.

View Article and Find Full Text PDF

Postoperative infection and thromboembolism represent significant sources of morbidity and mortality but cannot be easily tracked after hospital discharge. Therefore, a molecular test that could be performed at home would significantly impact disease management. Our lab has previously developed intravenously delivered 'synthetic biomarkers' that respond to dysregulated proteases to produce a urinary signal.

View Article and Find Full Text PDF