98%
921
2 minutes
20
Background: Respiratory tract infections represent a significant public health risk, and timely and accurate detection of bacterial infections facilitates rapid therapeutic intervention. Furthermore, monitoring the progression of infections after intervention enables 'course correction' in cases where initial treatments are ineffective, avoiding unnecessary drug dosing that can contribute to antibiotic resistance. However, current diagnostic and monitoring techniques rely on non-specific or slow readouts, such as radiographic imaging and sputum cultures, which fail to specifically identify bacterial infections and take several days to identify optimal antibiotic treatments.
Methods: Here we describe a nanoparticle system that detects P. aeruginosa lung infections by sensing host and bacterial protease activity in vivo, and that delivers a urinary detection readout. One protease sensor is comprised of a peptide substrate for the P. aeruginosa protease LasA. A second sensor designed to detect elastases is responsive to recombinant neutrophil elastase and secreted proteases from bacterial strains.
Findings: In mice infected with P. aeruginosa, nanoparticle formulations of these protease sensors-termed activity-based nanosensors (ABNs)-detect infections and monitor bacterial clearance from the lungs over time. Additionally, ABNs differentiate between appropriate and ineffective antibiotic treatments acutely, within hours after the initiation of therapy.
Interpretation: These findings demonstrate how activity measurements of disease-associated proteases can provide a noninvasive window into the dynamic process of bacterial infection and resolution, offering an opportunity for detecting, monitoring, and characterizing lung infections. FUND: National Cancer Institute, National Institute of Environmental Health Sciences, National Institutes of Health, National Science Foundation Graduate Research Fellowship Program, and Howard Hughes Medical Institute.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6306379 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2018.11.031 | DOI Listing |
Arch Microbiol
September 2025
División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Zip Code 36050, Guanajuato, Mexico.
Plasmids are fundamental to molecular biology and biotechnology, playing a crucial role in bacterial evolution. Some plasmids are linked to complex cellular dynamics, including pathogenicity islands, antibiotic resistance, and gene mobilization. This study reports the isolation and sequencing of two cryptic plasmids with different electrophoretic mobilities from the Escherichia coli clinical isolate O55.
View Article and Find Full Text PDFSex Transm Dis
September 2025
Department of Public Health and Infectious Diseases, University of Rome Sapienza, Rome, Italy & Azienda Ospedaliero Universitaria Umberto I, Rome, Italy.
Naturwissenschaften
September 2025
Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.
View Article and Find Full Text PDFKhirurgiia (Mosk)
September 2025
Children's City Clinical Hospital No. 9, named after G.N. Speransky, Moscow, Russia.
Background: The paper addresses an important section of pediatric combustiology - generalized meningococcal infection, associated with a severe course, the risk of disabling complications, life-threatening conditions, and high mortality.
Objective: The purpose of the study was to share the experience of treating patients with the sequelae of generalized bacterial infection caused by in a children's burn center.
Material And Methods: We conducted a retrospective analysis of the medical records of 23 patients treated in the burn department for babies from 0 to 3 years of the Children's City Clinical Hospital No.
J Exp Med
November 2025
Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
Host-pathogen interactions involve two critical strategies: resistance, whereby hosts clear invading microbes, and tolerance, whereby hosts carry high pathogen burden asymptomatically. Here, we investigate mechanisms by which Salmonella-superspreader (SSP) hosts maintain an asymptomatic state during chronic infection. We found that regulatory T cells (Tregs) are essential for this disease-tolerant state, limiting intestinal immunopathology and enabling SSP hosts to thrive, while facilitating Salmonella transmission.
View Article and Find Full Text PDF