Comput Med Imaging Graph
December 2024
Digital whole slide images (WSIs) are generally captured at microscopic resolution and encompass extensive spatial data (several billions of pixels per image). Directly feeding these images to deep learning models is computationally intractable due to memory constraints, while downsampling the WSIs risks incurring information loss. Alternatively, splitting the WSIs into smaller patches (or tiles) may result in a loss of important contextual information.
View Article and Find Full Text PDFOral epithelial dysplasia (OED) is a premalignant histopathological diagnosis given to lesions of the oral cavity. Its grading suffers from significant inter-/intra-observer variability, and does not reliably predict malignancy progression, potentially leading to suboptimal treatment decisions. To address this, we developed an artificial intelligence (AI) algorithm, that assigns an Oral Malignant Transformation (OMT) risk score based on the Haematoxylin and Eosin (H&E) stained whole slide images (WSIs).
View Article and Find Full Text PDFIEEE J Biomed Health Inform
March 2024
Semantic segmentation of various tissue and nuclei types in histology images is fundamental to many downstream tasks in the area of computational pathology (CPath). In recent years, Deep Learning (DL) methods have been shown to perform well on segmentation tasks but DL methods generally require a large amount of pixel-wise annotated data. Pixel-wise annotation sometimes requires expert's knowledge and time which is laborious and costly to obtain.
View Article and Find Full Text PDFOral squamous cell carcinoma (OSCC) is amongst the most common cancers, with more than 377,000 new cases worldwide each year. OSCC prognosis remains poor, related to cancer presentation at a late stage, indicating the need for early detection to improve patient prognosis. OSCC is often preceded by a premalignant state known as oral epithelial dysplasia (OED), which is diagnosed and graded using subjective histological criteria leading to variability and prognostic unreliability.
View Article and Find Full Text PDFCommun Med (Lond)
September 2022
Background: Computational pathology has seen rapid growth in recent years, driven by advanced deep-learning algorithms. Due to the sheer size and complexity of multi-gigapixel whole-slide images, to the best of our knowledge, there is no open-source software library providing a generic end-to-end API for pathology image analysis using best practices. Most researchers have designed custom pipelines from the bottom up, restricting the development of advanced algorithms to specialist users.
View Article and Find Full Text PDFExamination of pathological images is the golden standard for diagnosing and screening many kinds of cancers. Multiple datasets, benchmarks, and challenges have been released in recent years, resulting in significant improvements in computer-aided diagnosis (CAD) of related diseases. However, few existing works focus on the digestive system.
View Article and Find Full Text PDF