Publications by authors named "Neda Azarmehr"

This study uses artificial intelligence (AI) for differentiation between salivary gland tumours (SGT) using digitised Haematoxylin and Eosin stained whole-slide images (WSI). Machine learning (ML) classifiers were developed and tested using 320 scanned WSI. These included a benign versus malignant classifier (BvM) for automated identification of benign and malignant tumours, a malignant sub-typing (MST) classifier for subtyping four most common malignant SGT and a third classifier for malignant tumour grading.

View Article and Find Full Text PDF

Background And Objective: Training deep learning models for medical image segmentation require large annotated datasets, which can be expensive and time-consuming to create. Active learning is a promising approach to reduce this burden by strategically selecting the most informative samples for segmentation. This study investigates the use of active learning for efficient left ventricle segmentation in echocardiography with sparse expert annotations.

View Article and Find Full Text PDF

Doppler echocardiography is a widely utilised non-invasive imaging modality for assessing the functionality of heart valves, including the mitral valve. Manual assessments of Doppler traces by clinicians introduce variability, prompting the need for automated solutions. This study introduces an innovative deep learning model for automated detection of peak velocity measurements from mitral inflow Doppler images, independent from Electrocardiogram information.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) is amongst the most common cancers, with more than 377,000 new cases worldwide each year. OSCC prognosis remains poor, related to cancer presentation at a late stage, indicating the need for early detection to improve patient prognosis. OSCC is often preceded by a premalignant state known as oral epithelial dysplasia (OED), which is diagnosed and graded using subjective histological criteria leading to variability and prognostic unreliability.

View Article and Find Full Text PDF

Echocardiography is the most commonly used modality for assessing the heart in clinical practice. In an echocardiographic exam, an ultrasound probe samples the heart from different orientations and positions, thereby creating different viewpoints for assessing the cardiac function. The determination of the probe viewpoint forms an essential step in automatic echocardiographic image analysis.

View Article and Find Full Text PDF

Background: Accurate identification of end-diastolic and end-systolic frames in echocardiographic cine loops is important, yet challenging, for human experts. Manual frame selection is subject to uncertainty, affecting crucial clinical measurements, such as myocardial strain. Therefore, the ability to automatically detect frames of interest is highly desirable.

View Article and Find Full Text PDF

Speckle tracking is the most prominent technique used to estimate the regional movement of the heart based on echocardiograms. In this study, we propose an optimised-based block matching algorithm to perform speckle tracking iteratively. The proposed technique was evaluated using a publicly available synthetic echocardiographic dataset with known ground-truth from several major vendors and for healthy/ischaemic cases.

View Article and Find Full Text PDF