There is growing interest in hybrid DNA structures, particularly G-quadruplex-duplex junctions, as potential ligand binding sites. In this work, we investigate the interaction of two cyanine dyes (R9 and 3b), which differ in hydrophilicity, with various DNA structures, including duplex DNA, parallel and antiparallel G-quadruplexes, and a G-quadruplex-duplex junction. We employed molecular spectroscopic techniques (UV-visible absorption, circular dichroism, fluorescence), nuclear magnetic resonance (NMR) spectroscopy, multivariate analysis, and molecular docking studies.
View Article and Find Full Text PDFThe formation of nucleic acid triple helices ("triplexes") is an area of great interest due to their potential role in the natural and artificial regulation of gene expression or for use in analytical, diagnostic, or synthetic methods. During the coronavirus pandemic, a large search for novel methods for the detection of SARS-CoV-2 was undertaken. Based on triplex affinity capture and using polypurine reverse-Hoogsteen hairpins, a method known as Triplex Enhanced Nucleic Acid Detection Assay (TENADA) was developed for the rapid detection of SARS-CoV-2 without the need for polymerase chain reaction (PCR) amplification.
View Article and Find Full Text PDFBenzo[c]phenanthridine alkaloids are known for their stabilizing effects on non-canonical DNA structures, particularly G-quadruplexes (G4s). In this study, the interaction of fagaronine, a rare benzo[c]phenanthridine alkaloid, with several DNA structures (including B-DNA, parallel, antiparallel and hybrid G4s) is studied using molecular fluorescence and circular dichroism (CD) spectroscopy. It has been found that fagaronine significantly enhances the stability of all tested G4 conformations.
View Article and Find Full Text PDFTwo new asymmetric monomethine cyanine dyes, featuring dimethoxy quinolinium or methyl quinolinium end groups and benzothiazole or methyl benzothiazole end groups were synthesized. The chemical structures of the two dyes-()-6,7-dimethoxy-1-methyl-4-((3-methylbenzo[d]thiazol-2(3H)-ylidene)methyl)quinolin-1-ium iodide () and ()-4-((3,5-dimethylbenzo[d]thiazol-2(3H)-ylidene)methyl)-1,2-dimethylquinolin-1-ium iodide ()-were confirmed through NMR spectroscopy and MALDI-TOF mass spectrometry. A new methodology was developed to study monocationic dyes in the absence of a matrix and cationizing compounds in MALDI-TOF mass experiments.
View Article and Find Full Text PDFTriplex DNA structures, which are formed by the addition of an extra strand to a target B-DNA duplex, have attracted increasing interest due to their analytical and therapeutic applications. These structures are classified into parallel and antiparallel, depending on the orientation of the Triplex-Forming Oligonucleotide (TFO) relative to the B-DNA duplex. Whereas the formation of parallel triplexes is easily detected by monitoring spectral changes in the UV region, the formation of antiparallel triplexes produces small or even no spectral variations, which makes their detection difficult and uncertain.
View Article and Find Full Text PDFMolecules
December 2024
The development of fluorescence-based methods for bioassays and medical diagnostics requires the design and synthesis of specific markers to target biological microobjects. However, biomolecular recognition in real cellular systems is not always as selective as desired. A new concept for creating fluorescent biomolecular probes, utilizing a fluorogenic dye and biodegradable, biocompatible nanomaterials, is demonstrated.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2025
In this work, strategies for the detection of pyrimidine-rich DNA target sequences based on the formation of duplex and antiparallel triplex structures are studied. The presence of the target is detected from the changes in fluorescence of silver nanoclusters stabilized by the corresponding complementary DNA probes. In all cases, the formation of intermolecular structures has been assessed by means of melting experiments and multivariate analysis.
View Article and Find Full Text PDFQuadruplex-Duplex (Q-D) junctions are unique structural motifs garnering increasing interest as drug targets, due to their frequent occurrence in genomic sequences. The viral HIV LTR-III sequence was chosen as a Q-D junction model to study the affinity of the selected compounds BMH-21, namitecan (ST-1968), and doxorubicin (DOXO), all containing a planar polycyclic aromatic moiety, linked to either one short aminoalkyl or an aminoglycosyl group. A multidisciplinary approach that combines NMR spectroscopy, molecular modelling, circular dichroism (CD) and fluorescence spectroscopy was employed.
View Article and Find Full Text PDFInt J Biol Macromol
April 2024
Polypyrimidine sequences can be targeted by antiparallel clamps forming triplex structures either for biosensing or therapeutic purposes. Despite its successful implementation, their biophysical properties remain to be elusive. In this work, PAGE, circular dichroism and multivariate analysis were used to evaluate the properties of PPRHs directed to SARS-CoV-2 genome.
View Article and Find Full Text PDFThe i-motif is a class of nonstandard DNA structure with potential biological implications. A novel capillary electrophoresis with an ultraviolet absorption spectrophotometric detection (CE-UV) method has been developed for the rapid analysis of the i-motif folding equilibrium as a function of pH and temperature. The electrophoretic analyses are performed in reverse polarity of the separation voltage with 32 cm long fused silica capillaries permanently coated with hydroxypropyl cellulose (HPC), after an appropriate conditioning procedure was used to achieve good repeatability.
View Article and Find Full Text PDFIn the light of recent retrovirus pandemics, the issue of discovering new and diverse RNA-specific fluorochromes for research and diagnostics became of acute importance. The great majority of nucleic acid-specific probes either do not stain RNA or cannot distinguish between DNA and RNA. The versatility of polymethine dyes makes them suitable as stains for visualization, analysis, and detection of nucleic acids, proteins, and other biomolecules.
View Article and Find Full Text PDFInt J Biol Macromol
July 2023
Cytosine-rich DNA sequences may fold into a structure known as i-motif, with potential in vivo modulation of gene expression. The stability of the i-motif is residual at neutral pH values. To increase it, the addition of neighboring moieties, such as Watson-Crick stabilized loops, tetrads, or non-canonical base pairs have been proposed.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2023
In this work, the use of DNA-stabilized fluorescent silver nanoclusters for the detection of target pyrimidine-rich DNA sequences by formation of parallel and antiparallel triplex structures is studied by molecular fluorescence spectroscopy. In the case of parallel triplexes, the probe DNA fragments are Watson-Crick stabilized hairpins, and whereas in the case of antiparallel triplexes, the probe fragments are reverse-Hoogsteen clamps. In all cases, the formation of the triplex structures has been assessed by means of polyacrylamide gel electrophoresis, circular dichroism, and molecular fluorescence spectroscopies, as well as multivariate data analysis methods.
View Article and Find Full Text PDFSARS-CoV-2, a positive-strand RNA virus has caused devastating effects. The standard method for COVID diagnosis is based on polymerase chain reaction (PCR). The method needs expensive reagents and equipment and well-trained personnel and takes a few hours to be completed.
View Article and Find Full Text PDFThe enzyme PARP1 is an attractive target for cancer therapy, as it is involved in DNA repair processes. Several PARP1 inhibitors have been approved for clinical treatments. However, the rapid outbreak of resistance is seriously threatening the efficacy of these compounds, and alternative strategies are required to selectively regulate PARP1 activity.
View Article and Find Full Text PDFThe development of oligonucleotide conjugates for in vivo targeting is one of the most exciting areas for oligonucleotide therapeutics. A major breakthrough in this field was the development of multifunctional GalNAc-oligonucleotides with high affinity to asialoglycoprotein receptors (ASGPR) that directed therapeutic oligonucleotides to hepatocytes. In the present study, we explore the use of G-rich sequences functionalized with one unit of GalNAc at the 3'-end for the formation of tetrameric GalNAc nanostructures upon formation of a parallel G-quadruplex.
View Article and Find Full Text PDFSilver nanoclusters (AgNCs) prepared by the reduction of silver ions in the presence of DNA oligonucleotides have attracted great interest as potential diagnostic tools for their tunable and high fluorescent properties. In this work, three DNA sequences that consist of a 12-nucleotide long probe sequence at the 5'-end linked to the complementary sequence to three miRNAs are studied. First, the interaction of these sequences with Ag(i) was characterized by means of circular dichroism spectroscopy.
View Article and Find Full Text PDFBiology (Basel)
November 2021
Berberine, the most known quaternary protoberberine alkaloid (QPA), has been reported to inhibit the SIK3 protein connected with breast cancer. Berberine also appears to reduce the bcl-2 and XIAP expression-proteins responsible for the inhibition of apoptosis. As some problems in the therapy with berberine arose, we studied the DNA binding properties of escholidine, another QPA alkaloid.
View Article and Find Full Text PDFThere is an increasing interest in the study of guanine or cytosine-rich sequences that may fold into G-quadruplex (G4) or i-motif (iM) structures showing a short hairpin (or stem-loop) stabilized by Watson-Crick base pairs. These hybrid spatial arrangements may be target of ligands that have been shown to interact strongly with B-DNA. In this work, the interaction of the palmatine alkaloid with several sequences forming different G4s, iMs, and hybrid structures has been studied by means of spectroscopic and separation techniques, as well as multivariate data analysis methods.
View Article and Find Full Text PDFDNA repair inhibitors are one of the latest additions to cancer chemotherapy. In general, chemotherapy produces DNA damage but tumoral cells may become resistant if enzymes involved in DNA repair are overexpressed and are able to reverse DNA damage. One of the most successful drugs based on modulating DNA repair are the poly(ADP-ribose) polymerase 1 (PARP1) inhibitors.
View Article and Find Full Text PDFInt J Mol Sci
June 2021
Curaxins and especially the second-generation derivative curaxin CBL0137 have important antitumor activities in multiple cancers such as glioblastoma, melanoma and others. Although most of the authors suggest that their mechanism of action comes from the activation of p53 and inactivation of NF-kB by targeting FACT, there is evidence supporting the involvement of DNA binding in their antitumor activity. In this work, the DNA binding properties of curaxin CBL0137 with model quadruplex DNA oligomers were studied by H NMR, CD, fluorescence and molecular modeling.
View Article and Find Full Text PDFWe report the structural effect of 2'-deoxy-2',2'-difluorocytidine (dFdC) insertions in the DNA strand of a DNA : RNA hybrid duplex and in a self-complementary DNA : DNA duplex. In both cases, the modification slightly destabilizes the duplex and provokes minor local distortions that are more pronounced in the case of the DNA : RNA hybrid. Analysis of the solution structures determined by NMR methods show that dFdC is an adaptable derivative that adopts North type sugar conformation when inserted in pure DNA, or a South sugar conformation in the context of DNA : RNA hybrids.
View Article and Find Full Text PDFPoly ADP-ribose polymerases (PARP) are key proteins involved in DNA repair, maintenance as well as regulation of programmed cell death. For this reason they are important therapeutic targets for cancer treatment. Recent studies have revealed a close interplay between PARP1 recruitment and G-quadruplex stabilization, showing that PARP enzymes are activated upon treatment with a G4 ligand.
View Article and Find Full Text PDF