In the present study, the sequencing and analysis of the complete chloroplast genome of and its comparison with related species in the Cleomaceae family were carried out. The genome spans 157,714 base pairs (bp) and follows the typical chloroplast structure, consisting of a large single-copy (LSC) region (87,506 bp), a small single-copy (SSC) region (18,598 bp), and two inverted repeats (IRs) (25,805 bp each). We identified a total of 129 genes, including 84 protein-coding genes, 8 ribosomal RNA (rRNA) genes, and 37 transfer RNA (tRNA) genes.
View Article and Find Full Text PDFLow soil pH (acidic soil) is one of the most severe environmental constraints that severely inhibits crop production. Here, we screened 134 lines of the Cheongcheong/Nagdong Double Haploid (CNDH) rice population under low pH conditions to uncover candidate QTLs and identify low pH-resistant lines. A total of 17 QTLs against shoot length, root length and standard evaluation score in response to low pH were identified on 8 chromosomes (1, 2, 6, 7, 8, 9, 10, and 12).
View Article and Find Full Text PDFIn ornamental plants, one of the most complex life processes, i.e., flowering, is regulated by interaction between the microbiota, hormones, and genes.
View Article and Find Full Text PDFATP-binding cassette (ABC) transporters are integral membrane proteins involved in the active transport of various substrates, including heavy metals, across cellular membrane. In this study, we performed a genome-wide analysis and explored the expression profiles of ABC transporter genes in to identify their role in cadmium (Cd) stress tolerance. Several techniques were employed to determine the regulatory role of ABC transporters.
View Article and Find Full Text PDFRice is a staple food for billions of people but also a major source of methane emissions, contributing approximately 10% of global agricultural methane. Therefore, this study aimed to conduct a correlation analysis of various traits gathered from years of research on the 120 Cheongcheong Nagdong Double Haploid (CNDH) population to identify key traits responsible for methane emission in rice. This study focused on practical plant traits, including culm length, spikelets per panicle, and grain weight, which have a positive correlation with methane emission.
View Article and Find Full Text PDFMolecules
February 2025
This study optimized the extraction of flavonoids from using deep eutectic solvents (DESs), focusing on key factors such as the type of DES used, molar ratio, water content, solid/liquid ratio, extraction temperature, and time. Among six DESs tested, the betaine-acetic acid combination exhibited the highest extraction efficiency, attributed to its low viscosity (4.98 mPa·s).
View Article and Find Full Text PDFDrought stress significantly affects maize ( L.) growth by disrupting vital physiological and biochemical processes. This study investigates the potential of proline supplementation to alleviate drought-induced stress in maize plants.
View Article and Find Full Text PDFThe shift to a parasitic lifestyle in plants often leaves distinct marks on their plastid genomes, given the central role plastids play in photosynthesis. Studying these unique adaptations in parasitic plants is essential for understanding the mechanisms and evolutionary patterns driving plastome reduction in angiosperms. By exploring these changes, we can gain deeper insights into how parasitism reshapes the genomic architecture of plants.
View Article and Find Full Text PDFAntioxidants (Basel)
October 2024
This study investigates the impact of exogenous calcium and gamma-aminobutyric acid (GABA) supplementation on rice growth and stress tolerance under white-backed planthopper (WBPH) infestation. We evaluated several phenotypic traits, including shoot/root length, leaf width, tiller number, panicle length, and relative water content, alongside physiological markers such as oxidative stress indicators, antioxidant enzymes activities, hormonal levels, and amino acids biosynthesis. Our results indicate that WBPH stress significantly reduces growth parameters but calcium and GABA supplementation markedly enhance shoot length (by 26% and 36%) and root length (by 38% and 64%), respectively, compared to WBPH-infested plants.
View Article and Find Full Text PDFBackground: Recent shifts in consumer dietary preferences have led to a significant decline in rice consumption in Korea, resulting in surplus rice production. To address this issue, rice flour has been proposed as a substitute for wheat flour. However, the physical, chemical and structural differences between rice and wheat, particularly in grain hardness, pose challenges in using rice flour as an alternative.
View Article and Find Full Text PDFBiology (Basel)
August 2024
The negative impacts of soil salinization on ion homeostasis provide a significant global barrier to agricultural production and development. Plant physiology and biochemistry are severely affected by primary and secondary NaCl stress impacts, which damage cellular integrity, impair water uptake, and trigger physiological drought. Determining how transcriptional factors (TFs) and hormone networks are regulated in plants in response to salt stress is necessary for developing crops that tolerate salt.
View Article and Find Full Text PDFIn the face of escalating environmental challenges driven by human activities, the quest for innovative solutions to counter pollution, contamination, and ecological degradation has gained paramount importance. Traditional approaches to environmental remediation often fall short in addressing the complexity and scale of modern-day environmental problems. As industries transition towards sustainable paradigms, the exploration of novel materials and technologies becomes crucial.
View Article and Find Full Text PDFBackground: Photoperiod sensitivity is among the most important agronomic traits of rice, as it determines local and seasonal adaptability and plays pivotal roles in determining yield and other key agronomic characteristics. By controlling the photoperiod, early-maturing rice can be cultivated to shorten the breeding cycle, thereby reducing the risk of yield losses due to unpredictable climate change. Furthermore, early-maturing and high-yielding rice needs to be developed to ensure food security for a rapidly growing population.
View Article and Find Full Text PDFThe (Horváth) (Homoptera: Delphacidae) is a white-backed planthopper (WBPH) that causes "hopper burn" in rice, resulting in severe yield loss. Gamma-aminobutyric acid (GABA) is a well-known neurotransmitter that inhibits neurotransmission in insects by binding to specific receptors. In this study, we investigated the potential role of GABA in modulating rice resistance to WBPH and evaluated possible defense mechanisms.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2024
The importance of gamma-aminobutyric acid (GABA) in plants has been highlighted due to its critical role in mitigating metal toxicity, specifically countering the inhibitory effects of copper stress on rice plants. This study involved pre-treating rice plants with 1 mM GABA for one week, followed by exposure to varying concentrations of copper at 50 μM, 100 μM, and 200 μM. Under copper stress, particularly at 100 μM and 200 μM, plant height, biomass, chlorophyll content, relative water content, mineral content, and antioxidant activity decreased significantly compared to control conditions.
View Article and Find Full Text PDFIn this study, the complete plastome sequence of Nigella sativa (black seed), was analyzed for the first time. The plastome spans approximately 154,120 bp, comprising four sections: the Large Single-Copy (LSC) (85,538 bp), the Small Single-Copy (SSC) (17,984 bp), and two Inverted Repeat (IR) regions (25,299 bp). A comparative study of N.
View Article and Find Full Text PDFThis study investigates the impact of anthocyanin treatment on rice plants under drought stress, focusing on phenotypic, molecular, and biochemical responses. Anthocyanin were treated to one month old plants one week before the droughtexposure. Drought stress was imposed by using 10% polyethylene glycol (PEG 6000).
View Article and Find Full Text PDFParthenium hysterophorus, a globally widespread weed, poses a significant threat to agricultural ecosystems due to its invasive nature. We investigated the chloroplast genome of P. hysterophorus in this study.
View Article and Find Full Text PDFDue to global climate change, crops are certainly confronted with a lot of abiotic and biotic stress factors during their growth that cause a serious threat to their development and overall productivity. Among different abiotic stresses, salt and drought are considered the most devastating stressors with serious impact on crop's yield stability. Here, the current study aimed to elucidate how melatonin works in regulating plant biomass, oxidative stress, antioxidant defense system, as well as the expression of genes related to salt and drought stress in rice plants.
View Article and Find Full Text PDFInt J Biol Macromol
February 2024
Mosses play a significant role in ecology, evolution, and the economy. They belong to the nonvascular plant kingdom and are considered the closest living relatives of the first terrestrial plants. The circular chloroplast DNA molecules (plastomes) of mosses contain all the genetic information essential for chloroplast functions and represent the source of the evolutionary history of these organisms.
View Article and Find Full Text PDFMicroorganisms have recently gained recognition as efficient biological tool for reducing heavy metal toxicity in crops. In this experiment, we isolated a potent heavy metal (As, Ni, and Cr) resistant rhizobacterium Serratia marcescens DB1 and detected its plant growth promoting traits such as phosphate solubilization, gibberellin synthesis, organic acid production and amino acid regulation. Based on these findings, DB1 was further investigated for application in a rice var.
View Article and Find Full Text PDF