Surface-enhanced Raman spectroscopy (SERS) is increasingly recognized as a powerful tool for analytical applications, especially in food safety, due to its ability to detect molecular fingerprints even at the single-molecule level. Developing SERS substrates that offer not only high sensitivity but also reliability and practicability is critical for transitioning SERS from a laboratory-based technique to practical field applications. In this study, we present an outstandingly sensitive, reliable, and practical Ag/CuO nanocomposite SERS substrate, fabricated through a simple green electrochemical method.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) offers significant advantages, including label-free, non-invasive analysis and ultrasensitivity down to the single-molecule level, making it widely applicable in analytical chemistry and biology. However, its effectiveness is limited when detecting molecules with inherently low Raman scattering cross-sections, restricting its broader applications. In this study, we apply the photo-induced-photo-catalytic SERS (PI-PC SERS) technique, utilizing an Ag-deposited TiO nanorod (Ag/TiO NR) substrate to overcome this limitation.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) is an advantageous method for organic chemical and biological sensing. Benzoic acid, benzisothiazolinone, and thiram are common model compounds used to study the interaction of toxic substances with metal surfaces using SERS spectroscopy. Metal-organic frameworks, with their high porosity and large surface area, have recently received a lot of attention in sensing applications.
View Article and Find Full Text PDFBeing well-known as an excellent sorbent, metal-organic frameworks (MOFs) have been employed to intergrate with noble metal nanoparticles to fabricate active substrates for surface-enhance Raman spectroscopy (SERS) sensing applications. In this work, we employed three organic molecules with different molecular dimensions, including urea, methylene blue (MB) and Congo red (CR) for investigating SERS performance of a ZIP-8/Ag heterostructure. While every dimension of urea is smaller than the pore size of ZIP-8, MB and CR has one dimension larger than that of the pore size.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) is a renowned analytical technique for non-invasive molecular identification. Advancements in SERS technology pivot on designing nano-structured substrates to enhance sensitivity and reliability. A key emerging trend involves integrating pre-treatment and post-treatment techniques on these substrates, leveraging advanced nanostructures to bring unique features, such as ultrasensitivity or reusability, to bridge the gap between laboratory and real-world applications of the SERS technique.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) is widely recognized as a powerful analytical technique, offering molecular identification by amplifying characteristic vibrational signals, even at the single-molecule level. While SERS has been successfully applied for a wide range of targets including pesticides, dyes, bacteria, and pharmaceuticals, it has struggled with the detection of molecules with inherently low Raman scattering cross-sections. Urea, a key nitrogen-containing biomolecule and the diamide of carbonic acid, is a prime example of such a challenging target.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) is a powerful analytical technique, yet it faces challenges with certain probe molecules exhibiting weak or inactive signals, limiting their applicability. In a recent study, we investigated this phenomenon using a set of four probe molecules─chloramphenicol (CAP), 4-nitrophenol (4-NP), amoxicillin (AMX), and furazolidone (FZD)─deposited on Ag-based nanostructured SERS substrates. Despite being measured under identical conditions, CAP and 4-NP exhibited SERS activity, while AMX and FZD did not.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) is a powerful, highly efficient analytical technique capable of providing label-free, non-invasive, rapid, and ultrasensitive molecular detection down to the single-molecule level. Despite its advantages, SERS remains largely confined to laboratory settings due to the complexities of substrate fabrication and challenges in analyzing real-world samples. Developing flexible SERS substrates that achieve both high fabrication efficiency and high sensing performance, while being practical for field applications, is critical for advancing SERS toward broader, real-world use.
View Article and Find Full Text PDFA flexible, ultrasensitive, and practical SERS chip is presented based on a paper/f-TiO/Ag structure. The chip enhances the self-assembly of Ag nanoparticles on a cellulose fiber matrix, facilitated by smart functionalized TiO nanomaterials (f-TiO). This design enables superior detection of the hazardous pesticide tricyclazole (TCZ) on crops using an advanced, simple, and efficient analytical method.
View Article and Find Full Text PDFDespite being an excellent surface enhanced Raman scattering (SERS) active material, gold nanoparticles were difficult to be loaded onto the surface of filter paper to fabricate flexible SERS substrates. In this study, electrochemically synthesized gold nanoparticles (e-AuNPs) were deposited on graphene oxide (GO) nanosheets in solution by ultrasonication, resulting in the formation of a GO/Au hybrid material. Thanks to the support of GO, the hybrid material could adhere onto the surface of filter paper, which was immersed into a GO/Au solution for 24 h and dried naturally at room temperature.
View Article and Find Full Text PDFSilver nanoparticles (AgNPs) have been regarded as a highly promising substrate for surface-enhanced Raman scattering (SERS) sensors. In this study, we focused on the electrochemical synthesis method by developing three kinds of AgNPs using three different electrolytes: citrate (e-Ag-C), oleic acid (e-Ag-O) and fish mint ( Thunb.) extract (e-Ag-bio).
View Article and Find Full Text PDFA functional ternary substrate was developed for surface-enhanced Raman scattering (SERS) sensing systems. MnO nanosheets were synthesized by a simple and controllable hydrothermal method, followed by the integration of graphene oxide (GO) nanosheets. Subsequently, MnO/GO nanostructures were decorated with plasmonic Ag nanoparticles (e-AgNPs).
View Article and Find Full Text PDFFlexible surface-enhanced Raman scattering (SERS) sensors have gained significant attention for their practical applications in detecting chemical and biological molecules. However, the fabrication of flexible SERS chips is often complex and requires advanced techniques. In this study, we present a simple and rapid method to design a flexible SERS chip based on polyvinyl alcohol (PVA), cellulose, and silver nanoparticles (AgNPs) using mechanical stirring and drying methods.
View Article and Find Full Text PDFCrystal violet (CV) is an organic dye that is stabilized by the extensive resonance delocalization of electrons over three electron-donating amine groups. This prevents the molecule from being linked to a metal surface, and therefore, reduces the sensitivity of surface-enhanced Raman scattering (SERS) sensors for this toxic dye. In this work, we improved the sensing performance of a silver-based SERS sensor for CV detection by modifying the active substrate.
View Article and Find Full Text PDFTaking advantage of metal-semiconductor junctions, functional nanocomposites have been designed and developed as active substrates for surface-enhanced Raman scattering (SERS) sensing systems. In this work, we prepared three types of nanocomposites based on manganese oxide (MnO) nanostructures and electrochemically synthesized silver nanoparticles (e-AgNPs), which differed according to the morphologies of MnO. The SERS performance of MnO nanosheet/e-Ag (MnO-s/e-Ag), MnO nanorod/e-Ag (MnO-r/e-Ag), and MnO nanowire/e-Ag (MnO-w/e-Ag) was then evaluated using tricyclazole (TCZ), a commonly used pesticide, as an analyte.
View Article and Find Full Text PDF