Publications by authors named "Dong Thi Linh"

Surface-enhanced Raman spectroscopy (SERS) is increasingly recognized as a powerful tool for analytical applications, especially in food safety, due to its ability to detect molecular fingerprints even at the single-molecule level. Developing SERS substrates that offer not only high sensitivity but also reliability and practicability is critical for transitioning SERS from a laboratory-based technique to practical field applications. In this study, we present an outstandingly sensitive, reliable, and practical Ag/CuO nanocomposite SERS substrate, fabricated through a simple green electrochemical method.

View Article and Find Full Text PDF

This work presents the utilization of a hydrothermal treatment and a reduction reaction to synthesize a heterogeneous ZnO nanoplate (NPl)/Ag nanoparticle (NP) nanostructure for application in surface-enhanced Raman scattering (SERS). Under hydrothermal conditions, at 180 °C and 20 h, ZnO NPls with a thickness of 40 nm and edgewise size of 200 nm × 350 nm were prepared from precursors containing zinc acetate (CHCOO)Zn and sodium hydroxide (NaOH). Then, Ag NPs with an average diameter of 17 nm were deposited onto the surface of the ZnO NPls by reducing AgNO using trisodium citrate (TSC).

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is widely recognized as a powerful analytical technique, offering molecular identification by amplifying characteristic vibrational signals, even at the single-molecule level. While SERS has been successfully applied for a wide range of targets including pesticides, dyes, bacteria, and pharmaceuticals, it has struggled with the detection of molecules with inherently low Raman scattering cross-sections. Urea, a key nitrogen-containing biomolecule and the diamide of carbonic acid, is a prime example of such a challenging target.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) have been regarded as a highly promising substrate for surface-enhanced Raman scattering (SERS) sensors. In this study, we focused on the electrochemical synthesis method by developing three kinds of AgNPs using three different electrolytes: citrate (e-Ag-C), oleic acid (e-Ag-O) and fish mint ( Thunb.) extract (e-Ag-bio).

View Article and Find Full Text PDF

Recently, there have been publications on preparing hybrid materials between noble metal and semiconductor for applications in surface-enhanced Raman scattering (SERS) substrates to detect some toxic organic dyes. However, the use of cuprous oxide/silver (CuO/Ag) to measure the trace amounts of methyl orange (MO) has not been reported. Therefore, in this study, the trace level of MO in water solvent was determined using a SERS substrate based on CuO microcubes combined with silver nanoparticles (Ag NPs).

View Article and Find Full Text PDF