Int J Biol Macromol
October 2024
The important role of Carbohydrate-binding module (CBM) in the cellulases catalytic activity has been widely studied. CBM3 showed highest affinity for cellulose substrate with 84.69 % adsorption rate among CBM1, CBM2, CBM3, and CBM4 in this study.
View Article and Find Full Text PDFInt J Biol Macromol
July 2023
Cellulose materials have poor wet strength and are susceptible to acidic or basic environments. Herein, we developed a facile strategy to modify bacterial cellulose (BC) with a genetically engineered Family 3 Carbohydrate-Binding Module (CBM3). To assess the effect of BC films, water adsorption rate (WAR), water holding capacity (WHC), water contact angle (WCA), and mechanical and barrier properties were determined.
View Article and Find Full Text PDFFront Microbiol
May 2022
Biotransformation has gained increasing attention due to its being an eco-friendly way for the production of value-added chemicals. The present study aimed to assess the potential of ZB1 on guaiacyl lignin monomers biotransformation for the production of vanillin. Consequently, isoeugenol, eugenol, and vanillyl alcohol could be transformed into vanillin by ZB1.
View Article and Find Full Text PDFThis short communication analyzed the effects of lignin-derived phenolic acid compounds on cellulase. Vanillic acid, syringic acid, ferulic acid, and isovanillic acid improved cellulase specific activity and saccharification efficiency. In the enzymatic hydrolysis process, the promotion effect of phenolic acid was concentration-dependent.
View Article and Find Full Text PDFThe effects of laccase pretreatment and surfactant addition in the simultaneous saccharification and fermentation (SSF) of corn stover by engineered Saccharomyces cerevisiae were studied. Surfactants Tween-80, tea saponin and rhamnolipid improved ethanol production in SSF, among which the biosurfactant rhamnolipid reached the highest ethanol yield. At the 6 d in SSF, the ethanol content of addition rhamnolipid of laccase pretreatment corn stover (Lac-CS) and Lac-CS reached 0.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2021
To alleviate the risk of textile effluent, the development of highly effective bioremediation strategies for synthetic dye removal is needed. Herein, we aimed to assess whether intensified bioactivity of Bacillus pumilus ZB1 by oxidative stress could improve the removal of textile dyes. Methyl methanesulfonate (MMS) induced oxidative stress significantly promoted laccase expression of B.
View Article and Find Full Text PDFExoglucanase (CBH) is the rate limiting enzyme in the process of cellulose degradation. The carbohydrate binding module (CBM) can improve the accessibility of cellulase to substrate, thereby promoting the enzymatic hydrolysis of cellulase. In this study, the influence of CBM on the properties of GH6 exoglucanase from Chaetomium thermophilum (CtCBH) is systematically explored from three perspectives: the fusion of exogenous CBM, the exogenous CBM replacement of its own CBM, and the deletion of its own CBM.
View Article and Find Full Text PDFPretreatment can improve the hydrolysis efficiency of cellulose, in which biological pretreatment plays an important role. In the present study, we uncovered that has the ability of lignin degradation, which can decompose lignin and serve as a carbon source to meet the needs of its own growth. We used to pretreat the corn stalks and evaluate the effect on cellulose hydrolysis.
View Article and Find Full Text PDF