Socioeconomic status (SES) influences physical and mental health, however its relation with brain structure is less well documented. Here, we examine the role of SES on brain structure using Mendelian randomisation. First, we conduct a multivariate genome-wide association study of SES using educational attainment, household income, occupational prestige, and area-based social deprivation, with an effective sample size of N = 947,466.
View Article and Find Full Text PDFThe German Socio-Economic Panel (SOEP) serves a global research community by providing representative annual longitudinal data of respondents living in private households in Germany. The dataset offers a valuable life course panorama, encompassing living conditions, socioeconomic status, familial connections, personality traits, values, preferences, health, and well-being. To amplify research opportunities further, we have extended the SOEP Innovation Sample (SOEP-IS) by collecting genetic data from 2,598 participants, yielding the first genotyped dataset for Germany based on a representative population sample (SOEP-G).
View Article and Find Full Text PDFProprietary genetic datasets are valuable for boosting the statistical power of genome-wide association studies (GWASs), but their use can restrict investigators from publicly sharing the resulting summary statistics. Although researchers can resort to sharing down-sampled versions that exclude restricted data, down-sampling reduces power and might change the genetic etiology of the phenotype being studied. These problems are further complicated when using multivariate GWAS methods, such as genomic structural equation modeling (Genomic SEM), that model genetic correlations across multiple traits.
View Article and Find Full Text PDFProprietary genetic datasets are valuable for boosting the statistical power of genome-wide association studies (GWASs), but their use can restrict investigators from publicly sharing the resulting summary statistics. Although researchers can resort to sharing down-sampled versions that exclude restricted data, down-sampling reduces power and might change the genetic etiology of the phenotype being studied. These problems are further complicated when using multivariate GWAS methods, such as genomic structural equation modeling (Genomic SEM), that model genetic correlations across multiple traits.
View Article and Find Full Text PDFUnderstanding which biological pathways are specific versus general across diagnostic categories and levels of symptom severity is critical to improving nosology and treatment of psychopathology. Here, we combine transdiagnostic and dimensional approaches to genetic discovery for the first time, conducting a novel multivariate genome-wide association study of eight psychiatric symptoms and disorders broadly related to mood disturbance and psychosis. We identify two transdiagnostic genetic liabilities that distinguish between common forms of psychopathology versus rarer forms of serious mental illness.
View Article and Find Full Text PDFSocioeconomic status (SES) correlates with brain structure, a relation of interest given the long-observed relations of SES to cognitive abilities and health. Yet, major questions remain open, in particular, the pattern of causality that underlies this relation. In an unprecedently large study, here, we assess genetic and environmental contributions to SES differences in neuroanatomy.
View Article and Find Full Text PDFEstimates from genome-wide association studies (GWAS) of unrelated individuals capture effects of inherited variation (direct effects), demography (population stratification, assortative mating) and relatives (indirect genetic effects). Family-based GWAS designs can control for demographic and indirect genetic effects, but large-scale family datasets have been lacking. We combined data from 178,086 siblings from 19 cohorts to generate population (between-family) and within-sibship (within-family) GWAS estimates for 25 phenotypes.
View Article and Find Full Text PDFWe conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12-16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.
View Article and Find Full Text PDFHeavy alcohol consumption has been associated with brain atrophy, neuronal loss, and poorer white matter fiber integrity. However, there is conflicting evidence on whether light-to-moderate alcohol consumption shows similar negative associations with brain structure. To address this, we examine the associations between alcohol intake and brain structure using multimodal imaging data from 36,678 generally healthy middle-aged and older adults from the UK Biobank, controlling for numerous potential confounds.
View Article and Find Full Text PDFGenetic tests that predict the lifetime risk of common medical conditions are fast becoming more accurate and affordable. The life insurance industry is interested in using predictive genetic tests in the underwriting process, but more research is needed to establish whether this nascent form of genetic testing can refine the process over conventional underwriting factors. Here, we perform Cox regression of survival on a battery of genetic risk scores for common medical conditions and mortality risks in the Health and Retirement Study, without returning results to participants.
View Article and Find Full Text PDFHuman variation in brain morphology and behavior are related and highly heritable. Yet, it is largely unknown to what extent specific features of brain morphology and behavior are genetically related. Here, we introduce a computationally efficient approach for multivariate genomic-relatedness-based restricted maximum likelihood (MGREML) to estimate the genetic correlation between a large number of phenotypes simultaneously.
View Article and Find Full Text PDFBehaviors and disorders related to self-regulation, such as substance use, antisocial behavior and attention-deficit/hyperactivity disorder, are collectively referred to as externalizing and have shared genetic liability. We applied a multivariate approach that leverages genetic correlations among externalizing traits for genome-wide association analyses. By pooling data from ~1.
View Article and Find Full Text PDFNat Hum Behav
December 2021
Polygenic indexes (PGIs) are DNA-based predictors. Their value for research in many scientific disciplines is growing rapidly. As a resource for researchers, we used a consistent methodology to construct PGIs for 47 phenotypes in 11 datasets.
View Article and Find Full Text PDFPrevious research points to the heritability of risk-taking behaviour. However, evidence on how genetic dispositions are translated into risky behaviour is scarce. Here, we report a genetically informed neuroimaging study of real-world risky behaviour across the domains of drinking, smoking, driving and sexual behaviour in a European sample from the UK Biobank (N = 12,675).
View Article and Find Full Text PDFSocial science genetics is concerned with understanding whether, how and why genetic differences between human beings are linked to differences in behaviours and socioeconomic outcomes. Our review discusses the goals, methods, challenges and implications of this research endeavour. We survey how the recent developments in genetics are beginning to provide social scientists with a powerful new toolbox they can use to better understand environmental effects, and we illustrate this with several substantive examples.
View Article and Find Full Text PDFWe conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 × 10), while five of the 21 lead SNPs reach suggestive significance (P < 1 × 10) for at least one other macronutrient.
View Article and Find Full Text PDFGenetic correlations estimated from genome-wide association studies (GWASs) reveal pervasive pleiotropy across a wide variety of phenotypes. We introduce genomic structural equation modelling (genomic SEM): a multivariate method for analysing the joint genetic architecture of complex traits. Genomic SEM synthesizes genetic correlations and single-nucleotide polymorphism heritabilities inferred from GWAS summary statistics of individual traits from samples with varying and unknown degrees of overlap.
View Article and Find Full Text PDFHumans vary substantially in their willingness to take risks. In a combined sample of over 1 million individuals, we conducted genome-wide association studies (GWAS) of general risk tolerance, adventurousness, and risky behaviors in the driving, drinking, smoking, and sexual domains. Across all GWAS, we identified hundreds of associated loci, including 99 loci associated with general risk tolerance.
View Article and Find Full Text PDFA positive relationship between brain volume and intelligence has been suspected since the 19th century, and empirical studies seem to support this hypothesis. However, this claim is controversial because of concerns about publication bias and the lack of systematic control for critical confounding factors (e.g.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2018
Identifying causal effects in nonexperimental data is an enduring challenge. One proposed solution that recently gained popularity is the idea to use genes as instrumental variables [i.e.
View Article and Find Full Text PDF