Cadherin family proteins play a central role in epithelial and endothelial cell-cell adhesion. The dynamic regulation of cell adhesion is achieved in part through endocytic membrane trafficking pathways that modulate cadherin cell surface levels. Here, we define the role for various MARCH family ubiquitin ligases in the regulation of cadherin degradation.
View Article and Find Full Text PDFEndothelial dysfunction is a crucial factor in promoting organ failure during septic shock. However, the underlying mechanisms are unknown. Here, we show that kidney injury after lipopolysaccharide (LPS) insult leads to strong endothelial transcriptional and epigenetic responses.
View Article and Find Full Text PDFCadherin family proteins play a central role in epithelial and endothelial cell-cell adhesion. The dynamic regulation of cell adhesion is achieved in part through endocytic membrane trafficking pathways that modulate cadherin cell surface levels. Here, we define the role for various MARCH family ubiquitin ligases in the regulation of cadherin degradation.
View Article and Find Full Text PDFSOCS3 is the main inhibitor of the JAK/STAT3 pathway. This pathway is activated by interleukin 6 (IL-6), a major mediator of the cytokine storm during shock. To determine its role in the vascular response to shock, we challenged mice lacking SOCS3 in the adult endothelium (SOCS3iEKO) with a nonlethal dose of lipopolysaccharide (LPS).
View Article and Find Full Text PDFClin Epigenetics
May 2021
Background: There are no prior reports that compare differentially methylated regions of DNA in blood samples from COVID-19 patients to samples collected before the SARS-CoV-2 pandemic using a shared epigenotyping platform. We performed a genome-wide analysis of circulating blood DNA CpG methylation using the Infinium Human MethylationEPIC BeadChip on 124 blood samples from hospitalized COVID-19-positive and COVID-19-negative patients and compared these data with previously reported data from 39 healthy individuals collected before the pandemic. Prospective outcome measures such as COVID-19-GRAM risk-score and mortality were combined with methylation data.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
March 2021
Objective: Atherosclerosis predominantly forms in regions of oscillatory shear stress while regions of laminar shear stress are protected. This protection is partly through the endothelium in laminar flow regions expressing an anti-inflammatory and antithrombotic gene expression program. Several molecular pathways transmitting these distinct flow patterns to the endothelium have been defined.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2019
The roles of cellular orientation during trabecular and ventricular wall morphogenesis are unknown, and so are the underlying mechanisms that regulate cellular orientation. Myocardial-specific and double-knockout (MDKO) hearts display a variety of defects, including in cellular orientation, patterns of mitotic spindle orientation, trabeculation, and ventricular compaction. Furthermore, - and -null cardiomyocytes exhibit cellular behaviors distinct from those of control cells during trabecular morphogenesis based on single-cell lineage tracing.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
July 2017
Objective: Laminar flow activates myocyte enhancer factor 2 (MEF2) transcription factors in vitro to induce expression of atheroprotective genes in the endothelium. Here we sought to establish the role of Mef2c in the vascular endothelium in vivo.
Approach And Results: To study endothelial Mef2c, we generated endothelial-specific deletion of Mef2c using Tie2-Cre or Cdh5-Cre-ER and examined aortas and carotid arteries by en face immunofluorescence.
Endothelial p120-catenin (p120) maintains the level of vascular endothelial cadherin (VE-Cad) by inhibiting VE-Cad endocytosis. Loss of p120 results in a decrease in VE-Cad levels, leading to the formation of monolayers with decreased barrier function (as assessed by transendothelial electrical resistance [TEER]), whereas overexpression of p120 increases VE-Cad levels and promotes a more restrictive monolayer. To test whether reduced endocytosis mediated by p120 is required for VE-Cad formation of a restrictive barrier, we restored VE-Cad levels using an endocytic-defective VE-Cad mutant.
View Article and Find Full Text PDFVascular endothelial (VE)-cadherin undergoes constitutive internalization driven by a unique endocytic motif that also serves as a p120-catenin (p120) binding site. p120 binding masks the motif, stabilizing the cadherin at cell junctions. This mechanism allows constitutive VE-cadherin endocytosis and recycling to contribute to adherens junction dynamics without resulting in junction disassembly.
View Article and Find Full Text PDFActivation of Src Family Kinase (SFK) signaling is required for the increase in endothelial permeability induced by a variety of cytokines and growth factors. However, we previously demonstrated that activation of endogenous SFKs by expression of dominant negative C-terminal Src Kinase (DN-Csk) is not sufficient to decrease endothelial adherens junction integrity. Basal SFK activity has been observed in normal venular endothelia and was not associated with increased basal permeability.
View Article and Find Full Text PDFThe purpose of this study was to determine the role of canonical transient receptor potential 3 (TRPC3) channel in allergen-induced airway disease (AIAD) and its underlying signaling mechanisms. The procedures included (1) intravenous injection of lentiviral TRPC3 channel or nonsilencing short hairpin ribonucleic acid (shRNA) to make the channel knockdown (KD) or control mice, (2) allergen sensitization/challenge to induce AIAD, (3) patch-clamp recording and Ca(2+) imaging to examine the channel activity, and (4) gene manipulations and other methods to determine the underlying signaling mechanisms. The findings are that (1) intravenous or intranasal delivery of TRPC3 channel lentiviral shRNAs or blocker 1-[4-[(2,3,3-trichloro-1-oxo-2-propen-1-yl)amino]phenyl]-5-(trifluoromethyl)-1H-pyrazole-4-carboxylic acid prevents AIAD in mice, (2) TRPC3 channel KD and overexpression, respectively, blocks and augments protein kinase C-α/nuclear factor of κ light polypeptide gene enhancer in B-cell inhibitor-α (PKC-α/IκB-α)-mediated or calcineurin/IκB-β-dependent, NF-κB-dependent allergen-induced airway smooth muscle cell (ASMC) hyperproliferation and cyclin D1 (an important cell proliferation molecule) induction, and (3) the changes of the major molecules of the PKC-α/IκBα- and calcineurin/IκB-β-dependent NF-κB signaling pathways are also observed in asthmatic human ASMCs.
View Article and Find Full Text PDFCell Mol Bioeng
September 2014
Although 3D bio-printing technology has great potential in creating complex tissues with multiple cell types and matrices, maintaining the viability of thick tissue construct for tissue growth and maturation after the printing is challenging due to lack of vascular perfusion. Perfused capillary network can be a solution for this issue; however, construction of a complete capillary network at single cell level using the existing technology is nearly impossible due to limitations in time and spatial resolution of the dispensing technology. To address the vascularization issue, we developed a 3D printing method to construct larger (lumen size of ~1mm) fluidic vascular channels and to create adjacent capillary network through a natural maturation process, thus providing a feasible solution to connect the capillary network to the large perfused vascular channels.
View Article and Find Full Text PDFBiomaterials
September 2014
We developed a methodology using 3D bio-printing technology to create a functional in vitro vascular channel with perfused open lumen using only cells and biological matrices. The fabricated vasculature has a tight, confluent endothelium lining, presenting barrier function for both plasma protein and high-molecular weight dextran molecule. The fluidic vascular channel is capable of supporting the viability of tissue up to 5 mm in distance at 5 million cells/mL density under the physiological flow condition.
View Article and Find Full Text PDFEndothelial barrier function is critical for tissue fluid homeostasis, and its disruption contributes to various pathologies, including inflammation and sepsis. Thrombin is an endogenous agonist that impairs endothelial barrier function. We showed that the thrombin-induced decrease in transendothelial electric resistance of cultured human endothelial cells required the endoplasmic reticulum-localized, calcium-sensing protein stromal interacting molecule 1 (STIM1), but was independent of Ca2+ entry across the plasma membrane and the Ca2+ release-activated Ca2+ channel protein Orai1, which is the target of STIM1 in the store-operated calcium entry pathway.
View Article and Find Full Text PDFp120-catenin (p120) binds to the cytoplasmic tails of classical cadherins and inhibits cadherin endocytosis. Although p120 regulation of cadherin internalization is thought to be important for adhesive junction dynamics, the mechanism by which p120 modulates cadherin endocytosis is unknown. In this paper, we identify a dual-function motif in classical cadherins consisting of three highly conserved acidic residues that alternately serve as a p120-binding interface and an endocytic signal.
View Article and Find Full Text PDFAirway smooth muscle cell (ASMC) remodeling contributes to the structural changes in the airways that are central to the clinical manifestations of asthma. Ca(2+) signals play an important role in ASMC remodeling through control of ASMC migration and hypertrophy/proliferation. Upregulation of STIM1 and Orai1 proteins, the molecular components of the store-operated Ca(2+) entry (SOCE) pathway, has recently emerged as an important mediator of vascular remodeling.
View Article and Find Full Text PDFLeukocyte transendothelial migration (TEM) is regulated by several signaling pathways including Src family kinases (SFK) and the small RhoGTPases. Previous studies have shown that vascular endothelial-cadherin (VE-cad) forms a complex with β-,γ-, and p120-catenins and this complex disassociates to form a transient gap during leukocyte TEM. Additionally, p120-catenin (p120-1A) overexpression in human umbilical vein endothelial cells (HUVEC) stabilizes VE-cad surface expression, prevents tyrosine phosphorylation of VE-cad, and inhibits leukocyte TEM.
View Article and Find Full Text PDFRationale: The molecular correlate of the calcium release-activated calcium current (I(CRAC)), the channel protein Orai1, is upregulated in proliferative vascular smooth muscle cells (VSMC). However, the role of Orai1 in vascular disease remains largely unknown.
Objective: The goal of this study was to determine the role of Orai1 in neointima formation after balloon injury of rat carotid arteries and its potential upregulation in a mouse model of VSMC remodeling.
Am J Physiol Heart Circ Physiol
January 2011
The association of p120-catenin (p120) with the juxtamembrane domain (JMD) of vascular endothelial (VE)-cadherin is required to maintain VE-cadherin levels and transendothelial resistance (TEER) of endothelial cell monolayers. To distinguish whether decreased TEER was due to a loss of p120 and not to the decrease in VE-cadherin, we established a system in which p120 was depleted by short hairpin RNA delivered by lentivirus and VE-cadherin was restored via expression of VE-cadherin fused to green fluorescent protein (GFP). Loss of p120 resulted in decreased TEER, which was associated with decreased expression of VE-cadherin, β-catenin, plakoglobin, and α-catenin.
View Article and Find Full Text PDFMultiple Ca(2+) release and entry mechanisms and potential cytoskeletal targets have been implicated in vascular endothelial barrier dysfunction; however, the immediate downstream effectors of Ca(2+) signals in the regulation of endothelial permeability still remain unclear. In the present study, we evaluated the contribution of multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) as a mediator of thrombin-stimulated increases in human umbilical vein endothelial cell (HUVEC) monolayer permeability. For the first time, we identified the CaMKIIdelta(6) isoform as the predominant CaMKII isoform expressed in endothelium.
View Article and Find Full Text PDFMicrovasc Res
September 2010
P120 catenin (p120ctn) belongs to the family of Armadillo repeat-containing proteins, which are believed to have dual functions of cell-cell adhesion and transcriptional regulation. In vascular endothelium, p120ctn is mostly recognized for its cell-cell adhesion function through its ability to regulate VE-cadherin. The current study investigated whether p120ctn in endothelial cells also has the capability to signal transcription events.
View Article and Find Full Text PDFRationale: p120-catenin (p120) is an armadillo family protein that binds to the cytoplasmic domain of classical cadherins and prevents cadherin endocytosis. The role of p120 in vascular development is unknown.
Objective: The purpose of this study is to examine the role of p120 in mammalian vascular development by generating a conditionally mutant mouse lacking endothelial p120 and determining the effects of the knockout on vasculogenesis, angiogenic remodeling, and the regulation of endothelial cadherin levels.
Activation of Src family kinases (SFK) and the subsequent phosphorylation of VE-cadherin have been proposed as major regulatory steps leading to increases in vascular permeability in response to inflammatory mediators and growth factors. To investigate Src signaling in the absence of parallel signaling pathways initiated by growth factors or inflammatory mediators, we activated Src and SFKs by expression of dominant negative Csk, expression of constitutively active Src, or knockdown of Csk. Activation of SFK by overexpression of dominant negative Csk induced VE-cadherin phosphorylation at tyrosines 658, 685, and 731.
View Article and Find Full Text PDF