Publications by authors named "Pengxin Xu"

The emergence and spread of antibiotic-resistant bacteria negatively impact the effectiveness of antibiotics in treating burn wound infections, which significantly hinders the healing process. To address this, a β-lactoglobulin fibrils/oxidized dextran/phage (BLGFs/ODEX/Phage) hydrogel dressing has been developed to treat burn wounds that are infected with methicillin-resistant Staphylococcus aureus (MRSA). First, a highly efficacious MRSA phage is isolated and purified, and it exhibits excellent bactericidal efficiency, storage stability, biofilm degradation ability, and biocompatibility.

View Article and Find Full Text PDF

Ketamine (KA), commonly used as an anesthetic, is now widely studied as an antidepressant for the treatment of depression. However, due to its side effects, such as addiction and cognitive impairment, the dosage and frequency of (S)-ketamine approved by the FDA for the treatment of refractory depression is very low, which limits its efficacy. Here, a new multifunctional nanocarrier system (AC-RM@HA-MS) with specific targeting capabilities is developed to improve the efficacy of KA treatment.

View Article and Find Full Text PDF

Background And Purpose: Immunotherapeutic intervention is one of the most promising strategies for the prevention and treatment of Alzheimer's disease (AD). Although they showed great success in AD mouse models, the clinical trials of many immune approaches failed due to low efficacy and safety. Thus, an animal model which can show the potential side effects of vaccines or antibodies is urgently needed.

View Article and Find Full Text PDF

Broomcorn millet ( L.) is one of the oldest domesticated crops and has been grown in arid and semiarid areas in China since 10,000 cal. BP.

View Article and Find Full Text PDF

Overproduction or poor clearance of amyloids lead to amyloid aggregation and even amyloidosis development. Different amyloids may interact synergistically to promote their aggregation and accelerate pathology in amyloidoses. Amyloid oligomers assembled from different amyloids share common structures and epitopes, and are considered the most toxic species in the pathologic processes of amyloidoses, which suggests that an agent targeting the common epitope of toxic oligomers could provide benefit to several amyloidoses.

View Article and Find Full Text PDF
Article Synopsis
  • Alzheimer's disease (AD) pathology is linked to beta-amyloid oligomers, neuroinflammation, and oxidative stress, making these factors potential targets for treatment.
  • Previous research indicated that alpha-tocopherol quinine (α-TQ) can inhibit Aβ aggregation and reduce inflammation and oxidative stress in lab settings, but its effectiveness in vivo was uncertain.
  • This study showed that α-TQ improved memory in transgenic mice, reduced levels of Aβ oligomers and oxidative stress, decreased inflammatory responses, and inhibited microglial activation, suggesting it could be a promising therapeutic option for AD.
View Article and Find Full Text PDF

Recent evidence showed that amylin deposition is not only found in the pancreas in type 2 diabetes mellitus (T2DM) patients, but also in other peripheral organs, such as kidneys, heart and brain. Circulating amylin oligomers that cross the blood-brain barrier and accumulate in the brain may be an important contributor to diabetic cerebral injury and neurodegeneration. Moreover, increasing epidemiological studies indicate that there is a significant association between T2DM and Alzheimer's disease (AD).

View Article and Find Full Text PDF

Alzheimer disease (AD) is characterized by extracellular senile plaques, intracellular neurofibrillary tangles, and memory loss. Aggregated amyloid-β (Aβ), oxidative stress, and inflammation have pivotal roles in the pathogenesis of AD. Therefore, the inhibition of Aβ-induced neurotoxicity, oxidative stress, and inflammation is a potential therapeutic strategy for the treatment of AD.

View Article and Find Full Text PDF

Beta-amyloid (Aβ) aggregates have a pivotal role in pathological processing of Alzheimer's disease (AD). The clearance of Aβ monomer or aggregates is a causal strategy for AD treatment. Microglia and astrocytes are the main macrophages that exert critical neuroprotective roles in the brain.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles in the brain. Aβ aggregation is closely associated with neurotoxicity, oxidative stress, and neuronal inflammation. The soluble Aβ oligomers are believed to be the most neurotoxic form among all forms of Aβ aggregates.

View Article and Find Full Text PDF