Publications by authors named "Pengchun Yu"

The lymphatic vasculature comprises lymphatic capillaries and collecting vessels. To support lymphatic development, lymphatic endothelial cells (LECs) utilize nutrients to fuel lymphangiogenic processes. Meanwhile, LECs maintain constant prospero homeobox 1 (PROX1) expression critical for lymphatic specification.

View Article and Find Full Text PDF

Lymphatic endothelial cells (LECs) line lymphatic vessels, which play an important role in the transport of lymph fluid throughout the human body. An organized lymphatic network develops via a process termed "lymphangiogenesis." During development, LECs respond to growth factor signaling to initiate the formation of a primary lymphatic vascular network.

View Article and Find Full Text PDF

SIRT3 is a longevity factor that acts as the primary deacetylase in mitochondria. Although ubiquitously expressed, previous global SIRT3 knockout studies have shown primarily a cardiac-specific phenotype. Here, we sought to determine how specifically knocking out SIRT3 in cardiomyocytes (SIRTcKO mice) temporally affects cardiac function and metabolism.

View Article and Find Full Text PDF

Vaso-occlusive episode (VOE) is a common and critical complication of sickle cell disease (SCD). Its pathogenesis is incompletely understood. von Willebrand factor (VWF), a multimeric plasma hemostatic protein synthesized and secreted by endothelial cells and platelets, is increased during a VOE.

View Article and Find Full Text PDF

Metabolic flexibility is the capacity of cells to alter fuel metabolism in response to changes in metabolic demand or nutrient availability. It is critical for maintaining cellular bioenergetics and is involved in the pathogenesis of cardiovascular disease and metabolic disorders. However, the regulation and function of metabolic flexibility in lymphatic endothelial cells (LECs) remain unclear.

View Article and Find Full Text PDF

Metabolism is pivotal for formation of the lymphatic vasculature. Understanding metabolism in lymphatic endothelial cells (LECs) requires quantitative characterization of specific metabolic pathways. Here we describe methods for using radioactive tracers to assess flux rates of glycolysis, fatty acid β-oxidation, glucose oxidation, and glutamine oxidation.

View Article and Find Full Text PDF

The blood and lymphatic vasculatures are vital to the maintenance of homeostasis. The interaction between two vascular networks throughout the body is precisely controlled to enable oxygen and nutrient delivery, removal of carbon dioxide and metabolic waste, drainage of interstitial fluid, transport of immune cells, and other key activities. Recent years have seen an explosion of information dealing with the development and function of the lymphatic system.

View Article and Find Full Text PDF

Lymphangiogenesis is an important developmental process that is critical to regulation of fluid homeostasis, immune surveillance and response as well as pathogenesis of a number of diseases, among them cancer, inflammation, and heart failure. Specification, formation, and maturation of lymphatic blood vessels involves an interplay between a series of events orchestrated by various transcription factors that determine expression of key genes involved in lymphangiogenesis. These are traditionally thought to be under control of several key growth factors including vascular growth factor-C (VEGF-C) and fibroblast growth factors (FGFs).

View Article and Find Full Text PDF

Blood and lymphatic vasculatures are intimately involved in tissue oxygenation and fluid homeostasis maintenance. Assembly of these vascular networks involves sprouting, migration and proliferation of endothelial cells. Recent studies have suggested that changes in cellular metabolism are important to these processes.

View Article and Find Full Text PDF

Lymphatic vessels are intimately involved in the regulation of water and solute homeostasis by returning interstitial fluid back to the venous circulation and play an equally important role in immune responses by providing avenues for immune cell transport. Defects in the lymphatic vasculature result in a number of pathological conditions, including lymphedema and lymphangiectasia. Knowledge of molecular mechanisms underlying lymphatic development and maintenance is therefore critical for understanding, prevention and treatment of lymphatic circulation-related diseases.

View Article and Find Full Text PDF

Background: Arteriogenesis and collateral formation are complex processes requiring integration of multiple inputs to coordinate vessel branching, growth, maturation, and network size. Factors regulating these processes have not been determined.

Methods And Results: We used an inhibitor of NFκB activation (IκBαSR) under control of an endothelial-specific inducible promoter to selectively suppress endothelial nuclear factor-κB activation during development, in the adult vasculature, or in vitro.

View Article and Find Full Text PDF

Wiring of vascular and neural networks requires precise guidance of growing blood vessels and axons, respectively, to reach their targets during development. Both of the processes share common molecular signaling pathways. Transient receptor potential canonical (TRPC) channels are calcium-permeable cation channels and gated via receptor- or store-operated mechanisms.

View Article and Find Full Text PDF

Rationale: Wiring vascular and neural networks are known to share common molecular signaling pathways. Activation of transient receptor potential type C channels (TRPCs) has recently been shown to underlie chemotropic guidance of neural axons. It is thus of interest to examine whether TRPCs are also involved in vascular development.

View Article and Find Full Text PDF

Mutations in SMARCAL1 cause Schimke Immuno-Osseous Dysplasia (SIOD), an autosomal recessive multisystem developmental disease characterized by growth retardation, T-cell deficiency, bone marrow failure, anemia and renal failure. SMARCAL1 encodes an ATP-driven annealing helicase. However, the biological function of SMARCAL1 and the molecular basis of SIOD remain largely unclear.

View Article and Find Full Text PDF