Transient receptor potential canonical channels in angiogenesis and axon guidance.

Cell Mol Life Sci

State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

Published: December 2011


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wiring of vascular and neural networks requires precise guidance of growing blood vessels and axons, respectively, to reach their targets during development. Both of the processes share common molecular signaling pathways. Transient receptor potential canonical (TRPC) channels are calcium-permeable cation channels and gated via receptor- or store-operated mechanisms. Recent studies have revealed the requirement of TRPC channels in mediating guidance cue-induced calcium influx and their essential roles in regulating axon navigation and angiogenesis. Dissecting TRPC functions in these physiological processes may provide therapeutic implications for suppressing pathological angiogenesis and improving nerve regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11114694PMC
http://dx.doi.org/10.1007/s00018-011-0755-xDOI Listing

Publication Analysis

Top Keywords

transient receptor
8
receptor potential
8
potential canonical
8
trpc channels
8
channels
4
canonical channels
4
channels angiogenesis
4
angiogenesis axon
4
axon guidance
4
guidance wiring
4

Similar Publications

Background: The protective function of the tetrandrine (TET)-mediated transient receptor potential vanilloid 2 (TRPV2) channel in myocardial ischemia/reperfusion injury (MI/RI) has been established in numerous investigations. The objective of the current study was to explain how TRPV2 further modulates downstream factors to influence the progression of MI/RI.

Methods: To this end, an MI/RI model in rats and a hypoxia-reoxygenation (H/R) cell model in H9c2 cells were constructed.

View Article and Find Full Text PDF

Many neurological and psychiatric diseases are characterized by pathological neuronal activity. Current treatments involve drugs, surgeries, and implantable devices to modulate or remove the affected region. However, none of these methods can be simultaneously nonsurgical and possess site- and cell type specificity.

View Article and Find Full Text PDF

Knockdown of translocon-associated protein subunit beta (TRAPβ) stimulates cell cycle arrest and apoptosis in human colorectal cancer cells.

Biochim Biophys Acta Mol Cell Res

September 2025

Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland College Park, College Park, MD, 20742, USA. Electronic address:

Translocon-associated protein subunit beta (TRAPβ), also known as signal sequence receptor 2 (SSR2) serves as an auxiliary protein facilitating co-translational translocation in the endoplasmic reticulum (ER); however, its role in colorectal cancer is unknown to date. The objectives of the current study are to examine if TRAPβ/SSR2 knockdown affects the cell proliferation and to elucidate mechanisms by which TRAPβ/SSR2 regulates proliferation of human colorectal cancer. We silenced TRAPβ/SSR2 transiently and stably in human colorectal cancer cell lines and analyzed cell proliferative properties.

View Article and Find Full Text PDF

Thermosensitive transient receptor potential channel proteins: Emerging targets for acute lung injury: A review.

Int J Biol Macromol

September 2025

College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China. Electronic address:

The thermosensitive transient receptor potential (Thermo-TRP) channel proteins comprise TRPA1, TRPV1-V4, and TRPM8. TRP channels are mainly situated on cellular surfaces and react to a range of external factors, including heat, cold, acidity, osmotic pressure, chemical signals, and flavors, as well as intracellular signals such as Ca, Na, and cytokines. The thermo-TRP channels are associated with many physiological signal pathways, with their distinct molecular structure making them promising drug targets for respiratory diseases.

View Article and Find Full Text PDF

While affinity purification-mass spectrometry (AP-MS) has significantly advanced protein-protein interaction (PPI) studies, its limitations in detecting weak, transient, and membrane-associated interactions remain. To address these challenges, we introduced a proteomic method termed affinity purification coupled proximity labeling-mass spectrometry (APPLE-MS), which combines the high specificity of Twin-Strep tag enrichment with PafA-mediated proximity labeling. This method achieves improved sensitivity while maintaining high specificity (4.

View Article and Find Full Text PDF