Publications by authors named "Paul Renauer"

Spatially resolved in vivo CRISPR screening integrates gene editing with spatial transcriptomics to examine how genetic perturbations alter gene expression within native tissue environments. However, current methods are limited to small perturbation panels and the detection of a narrow subset of protein-coding RNAs. We present Perturb-DBiT, a distinct and versatile approach for the simultaneous co-sequencing of spatial total RNA whole-transcriptome and single-guide RNAs (sgRNAs), base-by-base, on the same tissue section.

View Article and Find Full Text PDF

Perturb-seq enabled the profiling of transcriptional effects of genetic perturbations in single cells but lacks the ability to examine the impact on tissue environments. We present Perturb-DBiT for simultaneous co-sequencing of spatial transcriptome and guide RNAs (gRNAs) on the same tissue section for in vivo CRISPR screen with genome-scale gRNA libraries, offering a comprehensive understanding of how genetic modifications affect cellular behavior and tissue architecture. This platform supports a variety of delivery vectors, gRNA library sizes, and tissue preparations, along with two distinct gRNA capture methods, making it adaptable to a wide range of experimental setups.

View Article and Find Full Text PDF

Natural killer (NK) cells have clinical potential against cancer; however, multiple limitations hinder the success of NK cell therapy. Here, we performed unbiased functional mapping of tumor-infiltrating NK (TINK) cells using in vivo adeno-associated virus (AAV)-SB (Sleeping Beauty)-CRISPR (clustered regularly interspaced short palindromic repeats) screens in four solid tumor mouse models. In parallel, we characterized single-cell transcriptomic landscapes of TINK cells, which identified previously unexplored subpopulations of NK cells and differentially expressed TINK genes.

View Article and Find Full Text PDF

Radiotherapy (RT), is a fundamental treatment for malignant tumors and is used in over half of cancer patients. As radiation can promote anti-tumor immune effects, a promising therapeutic strategy is to combine radiation with immune checkpoint inhibitors (ICIs). However, the genetic determinants that impact therapeutic response in the context of combination therapy with radiation and ICI have not been systematically investigated.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR)-T cells are powerful therapeutics; however, their efficacy is often hindered by critical hurdles. Here utilizing the endocytic feature of the cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) cytoplasmic tail, we reprogram CAR function and substantially enhance CAR-T efficacy in vivo. CAR-T cells with monomeric, duplex or triplex CTLA-4 cytoplasmic tails (CCTs) fused to the C terminus of CAR exhibit a progressive increase in cytotoxicity under repeated stimulation, accompanied by reduced activation and production of proinflammatory cytokines.

View Article and Find Full Text PDF

CRISPR technology has transformed multiple fields, including cancer and immunology. CRISPR-based gene editing and screening empowers direct genomic manipulation of immune cells, opening doors to unbiased functional genetic screens. These screens aid in the discovery of novel factors that regulate and reprogram immune responses, offering novel drug targets.

View Article and Find Full Text PDF

Immune evasion is a critical step of cancer progression that remains a major obstacle for current T cell-based immunotherapies. Hence, we investigated whether it is possible to genetically reprogram T cells to exploit a common tumor-intrinsic evasion mechanism whereby cancer cells suppress T-cell function by generating a metabolically unfavorable tumor microenvironment (TME). In an in silico screen, we identified ADA and PDK1 as metabolic regulators.

View Article and Find Full Text PDF

Unlabelled: Immune evasion is a critical step of cancer progression that remains a major obstacle for current T cell-based immunotherapies. Hence, we seek to genetically reprogram T cells to exploit a common tumor-intrinsic evasion mechanism, whereby cancer cells suppress T cell function by generating a metabolically unfavorable tumor microenvironment (TME). Specifically, we use an screen to identify and as metabolic regulators, in which gene overexpression (OE) enhances the cytolysis of CD19-specific CD8 CAR-T cells against cognate leukemia cells, and conversely, or deficiency dampens such effect.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cells are powerful therapeutics; however, their efficacy is often hindered by critical hurdles. Here, utilizing the endocytic feature of the cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) cytoplasmic tail (CT), we reprogram CAR function and substantially enhance CAR-T efficacy . CAR-T cells with monomeric, duplex, or triplex CTLA-4 CTs (CCTs) fused to the C-terminus of CAR exhibit a progressive increase in cytotoxicity under repeated stimulation, accompanied by reduced activation and production of pro-inflammatory cytokines.

View Article and Find Full Text PDF

Natural killer (NK) cells are an innate immune cell type that serves at the first level of defense against pathogens and cancer. NK cells have clinical potential, however, multiple current limitations exist that naturally hinder the successful implementation of NK cell therapy against cancer, including their effector function, persistence, and tumor infiltration. To unbiasedly reveal the functional genetic landscape underlying critical NK cell characteristics against cancer, we perform perturbomics mapping of tumor infiltrating NK cells by joint AAV-CRISPR screens and single cell sequencing.

View Article and Find Full Text PDF

The efficiency of targeted knock-in for cell therapeutic applications is generally low, and the scale is limited. In this study, we developed CLASH, a system that enables high-efficiency, high-throughput knock-in engineering. In CLASH, Cas12a/Cpf1 mRNA combined with pooled adeno-associated viruses mediate simultaneous gene editing and precise transgene knock-in using massively parallel homology-directed repair, thereby producing a pool of stably integrated mutant variants each with targeted gene editing.

View Article and Find Full Text PDF

As a clinical vaccine, lipid nanoparticle (LNP) mRNA has demonstrated potent and broad antibody responses, leading to speculation about its potential for antibody discovery. Here, we developed RAMIHM, a highly efficient strategy for developing fully human monoclonal antibodies that employs rapid mRNA immunization of humanized mice followed by single B cell sequencing (scBCR-seq). We immunized humanized transgenic mice with RAMIHM and generated 15 top-ranked clones from peripheral blood, plasma B, and memory B cell populations, demonstrating a high rate of antigen-specificity (93.

View Article and Find Full Text PDF

Although COVID-19 vaccines have been developed, multiple pathogenic coronavirus species exist, urging on development of multispecies coronavirus vaccines. Here we develop prototype lipid nanoparticle (LNP)-mRNA vaccine candidates against SARS-CoV-2 Delta, SARS-CoV, and MERS-CoV, and we test how multiplexing LNP-mRNAs can induce effective immune responses in animal models. Triplex and duplex LNP-mRNA vaccinations induce antigen-specific antibody responses against SARS-CoV-2, SARS-CoV, and MERS-CoV.

View Article and Find Full Text PDF

The Omicron variant of SARS-CoV-2 recently swept the globe and showed high level of immune evasion. Here, we generate an Omicron-specific lipid nanoparticle (LNP) mRNA vaccine candidate, and test its activity in animals, both alone and as a heterologous booster to WT mRNA vaccine. Our Omicron-specific LNP-mRNA vaccine elicits strong antibody response in vaccination-naïve mice.

View Article and Find Full Text PDF

Lipid nanoparticle (LNP)-mRNA vaccines offer protection against COVID-19; however, multiple variant lineages caused widespread breakthrough infections. Here, we generate LNP-mRNAs specifically encoding wild-type (WT), B.1.

View Article and Find Full Text PDF

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has high transmissibility and recently swept the globe. Due to the extensive number of mutations, this variant has high level of immune evasion, which drastically reduced the efficacy of existing antibodies and vaccines. Thus, it is important to test an Omicron-specific vaccine, evaluate its immune response against Omicron and other variants, and compare its immunogenicity as boosters with existing vaccine designed against the reference wildtype virus (WT).

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) has shown remarkable clinical efficacy in several cancer types. However, only a fraction of patients will respond to ICB. Here, we performed pooled mutagenic screening with CRISPR-mediated genetically engineered mouse models (CRISPR-GEMM) in ICB settings, and identified KMT2D as a major modulator of ICB response across multiple cancer types.

View Article and Find Full Text PDF

Immunotherapy has transformed cancer treatment. However, current immunotherapy modalities face various limitations. In the present study, we developed multiplexed activation of endogenous genes as an immunotherapy (MAEGI), a new form of immunotherapy that elicits antitumor immunity through multiplexed activation of endogenous genes in tumors.

View Article and Find Full Text PDF

CD8 T cells play essential roles in anti-tumor immune responses. Here, we performed genome-scale CRISPR screens in CD8 T cells directly under cancer immunotherapy settings and identified regulators of tumor infiltration and degranulation. The in vivo screen robustly re-identified canonical immunotherapy targets such as PD-1 and Tim-3, along with genes that have not been characterized in T cells.

View Article and Find Full Text PDF

The genetic makeup of cancer cells directs oncogenesis and influences the tumor microenvironment. In this study, we massively profiled genes that functionally drive tumorigenesis using genome-scale in vivo CRISPR screens in hosts with different levels of immunocompetence. As a convergent hit from these screens, Prkar1a mutant cells are able to robustly outgrow as tumors in fully immunocompetent hosts.

View Article and Find Full Text PDF

Objective: We examined genome-wide DNA methylation changes in CD8+ T cells from patients with lupus and controls and investigated the functional relevance of some of these changes in lupus.

Methods: Genome-wide DNA methylation of lupus and age, sex and ethnicity-matched control CD8+ T cells was measured using the Infinium MethylationEPIC arrays. Measurement of relevant cell subsets was performed via flow cytometry.

View Article and Find Full Text PDF

Objective: The goal of this study was to comprehensively characterize CD4+CD28+ T cells overexpressing CD11a and KIR genes, and examine the relationship between this T cell subset, genetic risk, and disease activity in lupus.

Methods: The size of the CD4+CD28+KIR+CD11a T cell subset was determined by flow cytometry, and total genetic risk for lupus was calculated in 105 female patients using 43 confirmed genetic susceptibility loci. Primary CD4+CD28+KIR+CD11a T cells were isolated from lupus patients or were induced from healthy individuals using 5-azacytidine.

View Article and Find Full Text PDF
Article Synopsis
  • Some people with lupus have special antibodies that can make blood clots more likely, which is a problem called antiphospholipid syndrome (APS).
  • Neutrophils, a type of white blood cell, are important in causing these blood clots, and scientists studied their genes to understand how they behave in APS.
  • A specific protein called PSGL-1 on neutrophils can help these cells stick to blood vessels and create clots, suggesting that targeting PSGL-1 might help treat APS patients.
View Article and Find Full Text PDF