Publications by authors named "Pascal Tillard"

Forest trees adopt effective strategies to optimize nitrogen (N) use through internal N recycling. In the context of more recurrent environmental stresses due to climate change, the question remains of whether increased frequency of drought or defoliation threatens this internal N recycling strategy. We submitted 8-year-old beech trees to 2 years of either severe drought (Dro) or manual defoliation (Def) to create a state of N starvation.

View Article and Find Full Text PDF

In mature symbiotic root nodules, differentiated rhizobia fix atmospheric dinitrogen and provide ammonium to fulfill the plant nitrogen (N) demand. The plant enables this process by providing photosynthates to the nodules. The symbiosis is adjusted to the whole plant N demand thanks to systemic N signaling controlling nodule development.

View Article and Find Full Text PDF

The trait-based approach in plant ecology aims at understanding and classifying the diversity of ecological strategies by comparing plant morphology and physiology across organisms. The major drawback of the approach is that the time and financial cost of measuring the traits on many individuals and environments can be prohibitive. We show that combining near-infrared spectroscopy (NIRS) with deep learning resolves this limitation by quickly, non-destructively, and accurately measuring a suite of traits, including plant morphology, chemistry, and metabolism.

View Article and Find Full Text PDF

The role of root phenes in nitrogen (N) acquisition and biomass production was evaluated in 10 contrasting natural accessions of Arabidopsis thaliana L. Seedlings were grown on vertical agar plates with two different nitrate supplies. The low N treatment increased the root to shoot biomass ratio and promoted the proliferation of lateral roots and root hairs.

View Article and Find Full Text PDF

In Arabidopsis (Arabidopsis thaliana), the High-Affinity Transport System (HATS) for root nitrate (NO3-) uptake depends mainly on four NRT2 NO3- transporters, namely NRT2.1, NRT2.2, NRT2.

View Article and Find Full Text PDF

In Arabidopsis thaliana, NRT2.1 codes for a main component of the root nitrate high-affinity transport system. Previous studies revealed that post-translational regulation of NRT2.

View Article and Find Full Text PDF

In symbiotic root nodules of legumes, terminally differentiated rhizobia fix atmospheric N2 producing an NH4+ influx that is assimilated by the plant. The plant, in return, provides photosynthates that fuel the symbiotic nitrogen acquisition. Mechanisms responsible for the adjustment of the symbiotic capacity to the plant N demand remain poorly understood.

View Article and Find Full Text PDF

Heat shock (HS) is known to have a profound impact on gene expression at different levels, such as inhibition of protein synthesis, in which HS blocks translation initiation and induces the sequestration of mRNAs into stress granules (SGs) or P-bodies for storage and/or decay. SGs prevent the degradation of the stored mRNAs, which can be reengaged into translation in the recovery period. However, little is known on the mRNAs stored during the stress, how these mRNAs are released from SGs afterward, and what the functional importance is of this process.

View Article and Find Full Text PDF

The water status and mineral nutrition of plants critically determine their growth and development. Nitrate (NO3(-)), the primary nitrogen source of higher plants, is known to impact the water transport capacity of roots (root hydraulic conductivity, Lpr). To explore the effects and mode of action of NO3(-) on Lpr, we used an extended set of NO3(-) transport (nrt1.

View Article and Find Full Text PDF

Living organisms sense and respond to changes in nutrient availability to cope with diverse environmental conditions. Nitrate (NO3-) is the main source of nitrogen for plants and is a major component in fertilizer. Unraveling the molecular basis of nitrate sensing and regulation of nitrate uptake should enable the development of strategies to increase the efficiency of nitrogen use and maximize nitrate uptake by plants, which would aid in reducing nitrate pollution.

View Article and Find Full Text PDF

Dipeptide (Leu-Leu) and nitrate transport activities of 26 Arabidopsis NPF (NRT1/PTR Family) proteins were screened in Saccharomyces cerevisiae and Xenopus laevis oocytes, respectively. Dipeptide transport activity has been confirmed for 2 already known dipeptide transporters (AtNPF8.1 and AtNPF8.

View Article and Find Full Text PDF

• Responses of the Medicago truncatula-Sinorhizobium interaction to variation in N₂-fixation of the bacterial partner were investigated. • Split-root systems were used to discriminate between local responses, at the site of interaction with bacteria, and systemic responses related to the whole plant N status. • The lack of N acquisition by a half-root system nodulated with a nonfixing rhizobium triggers a compensatory response enabling the other half-root system nodulated with N₂-fixing partners to compensate the local N limitation.

View Article and Find Full Text PDF

In Arabidopsis (Arabidopsis thaliana), the NRT2.1 gene codes for the main component of the root nitrate (NO(3)(-)) high-affinity transport system (HATS). Due to the strong correlation generally found between high-affinity root NO(3)(-) influx and NRT2.

View Article and Find Full Text PDF

Nitrate is both a nitrogen source for higher plants and a signal molecule regulating their development. In Arabidopsis, the NRT1.1 nitrate transporter is crucial for nitrate signaling governing root growth, and has been proposed to act as a nitrate sensor.

View Article and Find Full Text PDF

Adaptation of Medicago truncatula to local nitrogen (N) limitation was investigated to provide new insights into local and systemic N signaling. The split-root technique allowed a characterization of the local and systemic responses of NO(3)(-) or N(2)-fed plants to localized N limitation. (15)N and (13)C labeling were used to monitor plant nutrition.

View Article and Find Full Text PDF

Little is known about the molecular and regulatory mechanisms of long-distance nitrate transport in higher plants. NRT1.5 is one of the 53 Arabidopsis thaliana nitrate transporter NRT1 (Peptide Transporter PTR) genes, of which two members, NRT1.

View Article and Find Full Text PDF

Root ion transport systems are regulated by light and/or sugars, but the signaling mechanisms are unknown. We showed previously that induction of the NRT2.1 NO(3)(-) transporter gene by sugars was dependent on carbon metabolism downstream hexokinase (HXK) in glycolysis.

View Article and Find Full Text PDF

Legumes can acquire nitrogen (N) from NO(3)(-), NH(4)(+), and N(2) (through symbiosis with Rhizobium bacteria); however, the mechanisms by which uptake and assimilation of these N forms are coordinately regulated to match the N demand of the plant are currently unknown. Here, we find by use of the split-root approach in Medicago truncatula plants that NO(3)(-) uptake, NH(4)(+) uptake, and N(2) fixation are under general control by systemic signaling of plant N status. Indeed, irrespective of the nature of the N source, N acquisition by one side of the root system is repressed by high N supply to the other side.

View Article and Find Full Text PDF

Root NO(3)(-) efflux to the outer medium is a component of NO(3)(-) net uptake and can even overcome influx upon various stresses. Its role and molecular basis are unknown. Following a functional biochemical approach, NAXT1 (for NITRATE EXCRETION TRANSPORTER1) was identified by mass spectrometry in the plasma membrane (PM) of Arabidopsis thaliana suspension cells, a localization confirmed using a NAXT1-Green Fluorescent Protein fusion protein.

View Article and Find Full Text PDF

In Arabidopsis the NRT2.1 gene encodes a main component of the root high-affinity nitrate uptake system (HATS). Its regulation has been thoroughly studied showing a strong correlation between NRT2.

View Article and Find Full Text PDF

Localized proliferation of lateral roots in NO(3)(-)-rich patches is a striking example of the nutrient-induced plasticity of root development. In Arabidopsis, NO(3)(-) stimulation of lateral root elongation is apparently under the control of a NO(3)(-)-signaling pathway involving the ANR1 transcription factor. ANR1 is thought to transduce the NO(3)(-) signal internally, but the upstream NO(3)(-) sensing system is unknown.

View Article and Find Full Text PDF

The NRT2.1 gene of Arabidopsis thaliana encodes a major component of the root high-affinity NO(3)(-) transport system (HATS) that plays a crucial role in NO(3)(-) uptake by the plant. Although NRT2.

View Article and Find Full Text PDF

Up-regulation of the high-affinity transport system (HATS) for NO(3)(-) and stimulation of lateral root (LR) growth are two important adaptive responses of the root system to nitrogen limitation. Up-regulation of the NO(3)(-) HATS by nitrogen starvation is suppressed in the atnrt2.1-1 mutant of Arabidopsis (Arabidopsis thaliana), deleted for both NRT2.

View Article and Find Full Text PDF