A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Systemic signaling of the plant nitrogen status triggers specific transcriptome responses depending on the nitrogen source in Medicago truncatula. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Legumes can acquire nitrogen (N) from NO(3)(-), NH(4)(+), and N(2) (through symbiosis with Rhizobium bacteria); however, the mechanisms by which uptake and assimilation of these N forms are coordinately regulated to match the N demand of the plant are currently unknown. Here, we find by use of the split-root approach in Medicago truncatula plants that NO(3)(-) uptake, NH(4)(+) uptake, and N(2) fixation are under general control by systemic signaling of plant N status. Indeed, irrespective of the nature of the N source, N acquisition by one side of the root system is repressed by high N supply to the other side. Transcriptome analysis facilitated the identification of over 3,000 genes that were regulated by systemic signaling of the plant N status. However, detailed scrutiny of the data revealed that the observation of differential gene expression was highly dependent on the N source. Localized N starvation results, in the unstarved roots of the same plant, in a strong compensatory up-regulation of NO(3)(-) uptake but not of either NH(4)(+) uptake or N(2) fixation. This indicates that the three N acquisition pathways do not always respond similarly to a change in plant N status. When taken together, these data indicate that although systemic signals of N status control root N acquisition, the regulatory gene networks targeted by these signals, as well as the functional response of the N acquisition systems, are predominantly determined by the nature of the N source.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2287368PMC
http://dx.doi.org/10.1104/pp.107.115667DOI Listing

Publication Analysis

Top Keywords

systemic signaling
12
signaling plant
12
plant status
12
medicago truncatula
8
no3- uptake
8
uptake nh4+
8
nh4+ uptake
8
uptake fixation
8
nature source
8
plant
6

Similar Publications