Plant roots dynamically respond to nitrogen availability by executing a signaling and transcriptional cascade resulting in altered plant growth that is optimized for nutrient uptake. The NIN-LIKE PROTEIN 7 (NLP7) transcription factor senses nitrogen and, along with its paralog NLP6, partially coordinates transcriptional responses. While the post-translational regulation of NLP6 and NLP7 is well established, their upstream transcriptional regulation remains understudied in Arabidopsis (Arabidopsis thaliana) and other plant species.
View Article and Find Full Text PDFMany plant species are grown to enable access to specific organs or tissues, such as seeds, fruits, or stems. In some cases, a value is associated with a molecule that accumulates in a single type of cell. Domestication and subsequent breeding have often increased the yields of these target products by increasing the size, number, and quality of harvested organs and tissues but also via changes to overall plant growth architecture to suit large-scale cultivation.
View Article and Find Full Text PDFThe model plant Nicotiana benthamiana is an increasingly attractive organism for the production of high-value, biologically active molecules. However, N. benthamiana accumulates high levels of pyridine alkaloids, in particular nicotine, which complicates the downstream purification processes.
View Article and Find Full Text PDFCurr Opin Plant Biol
February 2023
Monoterpene indole alkaloids (MIAs) are a diverse class of plant natural products that include a number of medicinally important compounds. We set out to reconstitute the pathway for strictosidine, a key intermediate of all MIAs, from central metabolism in Nicotiana benthamiana. A disadvantage of this host is that its rich background metabolism results in the derivatization of some heterologously produced molecules.
View Article and Find Full Text PDFGenome engineering technologies enable targeted mutations to be induced at almost any location in plant genomes. In particular, Cas9 nucleases use easily recoded RNA guides to target user-defined sequences and generate double-stranded breaks (DSB) that are then repaired by the cell's endogenous repair mechanisms. Incorrect repair results in mutations at the target.
View Article and Find Full Text PDFSynth Biol (Oxf)
September 2021
Many goals in synthetic biology, including the elucidation and refactoring of biosynthetic pathways and the engineering of regulatory circuits and networks, require knowledge of protein function. In plants, the prevalence of large gene families means it can be particularly challenging to link specific functions to individual proteins. However, protein characterization has remained a technical bottleneck, often requiring significant effort to optimize expression and purification protocols.
View Article and Find Full Text PDFPlant Biotechnol J
January 2022
Arthropod crop pests are responsible for 20% of global annual crop losses, a figure predicted to increase in a changing climate where the ranges of numerous species are projected to expand. At the same time, many insect species are beneficial, acting as pollinators and predators of pest species. For thousands of years, humans have used increasingly sophisticated chemical formulations to control insect pests but, as the scale of agriculture expanded to meet the needs of the global population, concerns about the negative impacts of agricultural practices on biodiversity have grown.
View Article and Find Full Text PDFTransgenic plants are produced both to investigate gene function and to confer desirable traits into crops. Transgene copy number is known to influence expression levels, and consequently, phenotypes. Similarly, knowledge of transgene zygosity is desirable for making quantitative assessments of phenotype and tracking the inheritance of transgenes in progeny generations.
View Article and Find Full Text PDFBiofoundries integrate high-throughput software and hardware platforms with synthetic biology approaches to enable the design, execution and analyses of large-scale experiments. The unique and powerful combination of laboratory infrastructure and expertise in molecular biology and automation programming, provide flexible resources for a wide range of workflows and research areas. Here, we demonstrate the applicability of biofoundries to molecular microbiology, describing the development and application of automated workflows to identify the genetic basis of growth inhibition of the plant pathogen by a strain isolated from a potato field Combining transposon mutagenesis with automated high-throughput antagonistic assays, the workflow accelerated the screening of 2880 mutants to correlate growth inhibition with a biosynthetic gene cluster within 2 weeks.
View Article and Find Full Text PDFMultiple national and international trends and drivers are radically changing what biological security means for the United Kingdom (UK). New technologies present novel opportunities and challenges, and globalisation has created new pathways and increased the speed, volume and routes by which organisms can spread. The UK Biological Security Strategy (2018) acknowledges the importance of research on biological security in the UK.
View Article and Find Full Text PDFPromoters serve a critical role in establishing baseline transcriptional capacity through the recruitment of proteins, including transcription factors. Previously, a paucity of data for cis-regulatory elements in plants meant that it was challenging to determine which sequence elements in plant promoter sequences contributed to transcriptional function. In this study, we have identified functional elements in the promoters of plant genes and plant pathogens that utilize plant transcriptional machinery for gene expression.
View Article and Find Full Text PDFMethods Mol Biol
March 2021
Phytobricks are standardized DNA parts for plants that can be assembled hierarchically into transcriptional units and, subsequently, into multigene constructs. Phytobricks each contain the sequences of one or more functional elements that comprise eukaryotic transcription units, with sequence features that enable them to be used interchangeably in one-step cloning reactions to facilitate combinatorial assembly. The simplicity and efficiency of this one-step reaction has enabled Phytobrick assembly to be miniaturized and automated on liquid handing platforms.
View Article and Find Full Text PDFPlant Biotechnol J
February 2021
In the last 20 years, stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), has re-emerged as a major threat to wheat and barley production in Africa and Europe.
View Article and Find Full Text PDFHorizon scanning is intended to identify the opportunities and threats associated with technological, regulatory and social change. In 2017 some of the present authors conducted a horizon scan for bioengineering (Wintle et al., 2017).
View Article and Find Full Text PDFPowered by developments that enabled genome-scale investigations, systems biology emerged as a field aiming to understand how phenotypes emerge from network functions. These advances fuelled a new engineering discipline focussed on synthetic reconstructions of complex biological systems with the goal of predictable rational design and control. Initially, progress in the nascent field of synthetic biology was slow due to the ad hoc nature of molecular biology methods such as cloning.
View Article and Find Full Text PDFWe present the OpenPlant toolkit, a set of interlinked resources and techniques to develop Marchantia as testbed for bioengineering in plants. Marchantia is a liverwort, a simple plant with an open form of development that allows direct visualization of gene expression and dynamics of cellular growth in living tissues. We describe new techniques for simple and efficient axenic propagation and maintenance of Marchantia lines with no requirement for glasshouse facilities.
View Article and Find Full Text PDFThe original version of this Comment contained errors in the legend of Figure 2, in which the locations of the fifteenth and sixteenth GBA members were incorrectly given as '(15) Australian Genome Foundry, Macquarie University; (16) Australian Foundry for Advanced Biomanufacturing, University of Queensland.'. The correct version replaces this with '(15) Australian Foundry for Advanced Biomanufacturing (AusFAB), University of Queensland and (16) Australian Genome Foundry, Macquarie University'.
View Article and Find Full Text PDFPlant Biotechnol J
December 2019
We investigated whether Cas9-mediated mutagenesis of starch-branching enzymes (SBEs) in tetraploid potatoes could generate tuber starches with a range of distinct properties. Constructs containing the Cas9 gene and sgRNAs targeting SBE1, SBE2 or both genes were introduced by Agrobacterium-mediated transformation or by PEG-mediated delivery into protoplasts. Outcomes included lines with mutations in all or only some of the homoeoalleles of SBE genes and lines in which homoeoalleles carried several different mutations.
View Article and Find Full Text PDFGlycoside phosphorylases (GPs) catalyze the phosphorolysis of glycans into the corresponding sugar 1-phosphates and shortened glycan chains. Given the diversity of natural β-(1→3)-glucans and their wide range of biotechnological applications, the identification of enzymatic tools that can act on β-(1→3)-glucooligosaccharides is an attractive area of research. GP activities acting on β-(1→3)-glucooligosaccharides have been described in bacteria, the photosynthetic excavate , and the heterokont spp.
View Article and Find Full Text PDFMolecular tools adapted from bacterial CRISPR (Clustered Regulatory Interspaced Short Palindromic Repeats) systems for adaptive immunity have become widely used for plant genome engineering, both to investigate gene functions and to engineer desirable traits. A number of different Cas (CRISPR-associated) nucleases are now used but, as most studies performed to date have engineered different targets using a variety of plant species and molecular tools, it has been difficult to draw conclusions about the comparative performance of different nucleases. Due to the time and effort required to regenerate engineered plants, efficiency is critical.
View Article and Find Full Text PDFHigh-efficiency methods for DNA assembly have enabled the routine assembly of synthetic DNAs of increased size and complexity. However, these techniques require customization, elaborate vector sets or serial manipulations for the different stages of assembly. We have developed Loop assembly based on a recursive approach to DNA fabrication.
View Article and Find Full Text PDF