A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Beyond natural: synthetic expansions of botanical form and function. | LitMetric

Beyond natural: synthetic expansions of botanical form and function.

New Phytol

Engineering Biology, Earlham Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UZ, UK.

Published: July 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Powered by developments that enabled genome-scale investigations, systems biology emerged as a field aiming to understand how phenotypes emerge from network functions. These advances fuelled a new engineering discipline focussed on synthetic reconstructions of complex biological systems with the goal of predictable rational design and control. Initially, progress in the nascent field of synthetic biology was slow due to the ad hoc nature of molecular biology methods such as cloning. The application of engineering principles such as standardisation, together with several key technical advances, enabled a revolution in the speed and accuracy of genetic manipulation. Combined with mathematical and statistical modelling, this has improved the predictability of engineering biological systems of which nonlinearity and stochasticity are intrinsic features leading to remarkable achievements in biotechnology as well as novel insights into biological function. In the past decade, there has been slow but steady progress in establishing foundations for synthetic biology in plant systems. Recently, this has enabled model-informed rational design to be successfully applied to the engineering of plant gene regulation and metabolism. Synthetic biology is now poised to transform the potential of plant biotechnology. However, reaching full potential will require conscious adjustments to the skillsets and mind sets of plant scientists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7383487PMC
http://dx.doi.org/10.1111/nph.16562DOI Listing

Publication Analysis

Top Keywords

synthetic biology
12
biological systems
8
rational design
8
biology
5
natural synthetic
4
synthetic expansions
4
expansions botanical
4
botanical form
4
form function
4
function powered
4

Similar Publications