Publications by authors named "Nicholette D Palmer"

Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) progression is not well understood. Using high-throughput proteomics, biostatistical, pathway and machine learning tools, we examine the urinary Complement proteome in two prospective cohorts with type 1 or 2 diabetes and advanced DKD followed for 1,804 person-years. The top 5% urinary proteins representing multiple components of the Complement system (C2, C5a, CL-K1, C6, CFH and C7) are robustly associated with 10-year kidney failure risk, independent of clinical covariates.

View Article and Find Full Text PDF

Carotid artery intima-media thickness (cIMT) is a measurement of subclinical atherosclerosis that predicts future cardiovascular events, including stroke and myocardial infarction. Genome-wide association studies (GWAS) have identified only a fraction of the genetic variants associated with cIMT. We performed the largest GWAS for cIMT involving up to 131,000 individuals.

View Article and Find Full Text PDF

To understand the relationship between type 2 diabetes (T2D) and risk for developing cognitive impairment, this study is the first to examine association between metabolites measured at mid-life and cognitive performance assessed later in life (8-10 years) in a T2D-enriched cohort. The discovery set included metabolomics from European Americans (EAs; n = 137) and African Americans (AAs; n = 134) from the Diabetes Heart Study (DHS) and the African American-DHS (AA-DHS). The cognitive testing battery included measures of executive function, memory, attention, language, and global cognition.

View Article and Find Full Text PDF

Obesity is a major public health crisis associated with high mortality rates. Previous genome-wide association studies (GWAS) investigating body mass index (BMI) have largely relied on imputed data from European individuals. This study leveraged whole-genome sequencing (WGS) data from 88,873 participants from the Trans-Omics for Precision Medicine (TOPMed) Program, of which 51% were of non-European population groups.

View Article and Find Full Text PDF

Here, we present a multi-omics study of type 2 diabetes and quantitative blood lipid and lipoprotein traits conducted to date in Hispanic/Latino populations (n = 63,184). We conduct a meta-analysis of 16 type 2 diabetes and 19 lipid trait GWAS, identifying 20 genome-wide significant loci for type 2 diabetes, including one novel locus and novel signals at two known loci, based on fine-mapping. We also identify sixty-one genome-wide significant loci across the lipid/lipoprotein traits, including nine novel loci, and novel signals at 19 known loci through fine-mapping.

View Article and Find Full Text PDF

Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discovered 22 novel gene-sleep duration interaction loci for blood pressure, mapped to 23 genes.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by increased hepatic steatosis with cardiometabolic disease and is a leading cause of advanced liver disease. We review here the genetic basis of MASLD. The genetic variants most consistently associated with hepatic steatosis implicate genes involved in lipoprotein input or output, glucose metabolism, adiposity/fat distribution, insulin resistance, or mitochondrial/ER biology.

View Article and Find Full Text PDF

Background: Previous work has shown a role of CCL2, a key chemokine governing monocyte trafficking, in atherosclerosis. However, it remains unknown whether targeting CCR2, the cognate receptor of CCL2, provides protection against human atherosclerotic cardiovascular disease.

Methods: Computationally predicted damaging or loss-of-function (REVEL > 0.

View Article and Find Full Text PDF

Background: Genome-wide association studies have identified several hundred susceptibility single nucleotide variants for coronary artery disease (CAD). Despite single nucleotide variant-based genome-wide association studies improving our understanding of the genetics of CAD, the contribution of structural variants (SVs) to the risk of CAD remains largely unclear.

Method And Results: We leveraged SVs detected from high-coverage whole genome sequencing data in a diverse group of participants from the National Heart Lung and Blood Institute's Trans-Omics for Precision Medicine program.

View Article and Find Full Text PDF

Large-scale whole-genome sequencing (WGS) studies have improved our understanding of the contributions of coding and noncoding rare variants to complex human traits. Leveraging association effect sizes across multiple traits in WGS rare variant association analysis can improve statistical power over single-trait analysis, and also detect pleiotropic genes and regions. Existing multi-trait methods have limited ability to perform rare variant analysis of large-scale WGS data.

View Article and Find Full Text PDF

Background And Aims: Steatotic liver disease (SLD) is the most common chronic liver disease strongly associated with metabolic dysfunction, but its pathogenesis remains incompletely understood. Exploring plasma circulating metabolites may help in elucidating underlying mechanisms and identifying new biomarkers for SLD.

Methods: We examined cross-sectionally the association between plasma metabolites and SLD as well as liver enzymes using data from 4 population-based cohort studies (Rotterdam study, Avon Longitudinal Study of Parents and Children, The Insulin Resistance Atherosclerosis Family Study, and Study of Latinos).

View Article and Find Full Text PDF

Whole-genome sequencing studies of parent-offspring trios have provided valuable insights into the potential impact of de novo mutations (DNMs) on human health and disease. However, the molecular mechanisms that drive DNMs are unclear. Studies with multi-child families can provide important insight into the causes of inter-family variability in DNM rates but they are highly limited.

View Article and Find Full Text PDF

Background: Apolipoprotein L1 gene () variants are risk factors for chronic kidney disease (CKD) among Black Americans. Data are sparse on the genetic epidemiology of CKD and the clinical association of variants with CKD in West Africans, a major group in the Black population.

Methods: We conducted a case-control study involving participants from Ghana and Nigeria who had CKD stages 2 through 5, biopsy-proven glomerular disease, or no kidney disease.

View Article and Find Full Text PDF
Article Synopsis
  • Whole genome sequencing (WGS) helps identify rare genetic variants that may explain the missing heritability of coronary artery disease (CAD) by analyzing 4,949 cases and 17,494 controls from the NHLBI TOPMed program.
  • The study estimates that the heritability of CAD is around 34.3%, with ultra-rare variants contributing about 50%, especially those with low linkage disequilibrium.
  • Functional annotations show significant enrichment of CAD heritability, highlighting the importance of ultra-rare variants and specific regulatory mechanisms in different cells as major factors influencing genetic risk for the disease.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how rare non-coding genetic variations affect complex traits, specifically focusing on human height by analyzing data from over 333,100 individuals across three large datasets.
  • Researchers found 29 significant rare variants linked to height, with impacts ranging from a decrease of 7 cm to an increase of 4.7 cm, after considering previously known variants.
  • The team also identified specific non-coding variants near key genes associated with height, demonstrating a new method for understanding the effects of rare variants in regulatory regions using whole-genome sequencing.
View Article and Find Full Text PDF
Article Synopsis
  • * We found 17 genetic loci associated with sleep duration impacting lipid levels, with 10 of them being newly identified and linked to sleep-related disturbances in lipid metabolism.
  • * The research points to potential drug targets that could lead to new treatments for lipid-related issues in individuals with sleep problems, highlighting the connection between sleep patterns and cardiovascular health.
View Article and Find Full Text PDF

Coronary artery calcium (CAC) is a marker of subclinical atherosclerosis and is a complex heritable trait with both genetic and environmental risk factors, including sex and smoking. We performed genome-wide association (GWA) analyses for CAC among all participants and stratified by sex in the COPDGene study ( = 6144 participants of European ancestry and = 2589 participants of African ancestry) with replication in the Diabetes Heart Study (DHS). We adjusted for age, sex, current smoking status, BMI, diabetes, self-reported high blood pressure, self-reported high cholesterol, and genetic ancestry (as summarized by principal components computed within each racial group).

View Article and Find Full Text PDF

Aging significantly influences cellular activity and metabolism in glucose-responsive tissues, yet a comprehensive evaluation of the impacts of aging and associated cell-type responses has been lacking. This study integrates transcriptomic, methylomic, single-cell RNA sequencing, and metabolomic data to investigate aging-related regulations in adipose and muscle tissues. Through coexpression network analysis of the adipose tissue, we identified aging-associated network modules specific to certain cell types, including adipocytes and immune cells.

View Article and Find Full Text PDF
Article Synopsis
  • Coronary artery calcification (CAC) is linked to heart disease and assessed through a genome-wide association study (GWAS) involving 22,400 participants from various backgrounds.
  • The study confirmed connections with four known genetic loci and discovered two new loci related to CAC, with supportive replication findings for both.
  • Functional tests suggest that ARSE promotes calcification in vascular smooth muscle cells and its variants may influence CAC levels, identifying ARSE as a key target for potential treatments in vascular calcific diseases.
View Article and Find Full Text PDF
Article Synopsis
  • Genome-wide association studies (GWAS) have successfully identified genes linked to telomere length, but previous research hadn't validated these findings until now.
  • In a large analysis involving over 211,000 people, the study discovered five new signals linked to telomere length and highlighted the importance of blood/immune cells in this area.
  • The researchers confirmed that the genes KBTBD6 and POP5 truly affect telomere length by demonstrating that manipulating these genes can lengthen telomeres and that their regulation is crucial for understanding telomere biology.
View Article and Find Full Text PDF
Article Synopsis
  • * Neuroimaging reveals that many of these genetic variants have widespread effects on brain regions and are linked to various cancers and specific signaling pathways, such as p53 and Wnt.
  • * The findings suggest a connection between the genes that regulate head size and the likelihood of cancer, emphasizing the need for further research on the implications of this relationship.
View Article and Find Full Text PDF

Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to genes involved in neurological, thyroidal, bone metabolism, and hematopoietic pathways.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease. Because many genes associate with DKD, multiomics approaches were used to narrow the list of functional genes, gene products, and related pathways providing insights into the pathophysiological mechanisms of DKD. The Kidney Precision Medicine Project human kidney single-cell RNA-sequencing (scRNA-seq) data set and Mendeley Data on human kidney cortex biopsy proteomics were used.

View Article and Find Full Text PDF

APOL1-mediated kidney diseases have forever changed nephrology and kidney transplantation. Neves et al. extend this field with analyses in admixed Brazilians with the most severe type of APOL1-mediated kidney disease, idiopathic collapsing glomerulopathy.

View Article and Find Full Text PDF