Publications by authors named "Munseong Bae"

Under-display camera (UDC) systems enable full-screen displays in smartphones by embedding the camera beneath the display panel, eliminating the need for notches or punch holes. However, the periodic pixel structures of display panels introduce significant optical diffraction effects, leading to imaging artifacts and degraded visual quality. Conventional approaches to mitigate these distortions, such as deep learning-based image reconstruction, are often computationally expensive and unsuitable for real-time applications in consumer electronics.

View Article and Find Full Text PDF

An optical vortex beam has attracted significant attention across diverse applications, including optical manipulation, phase-contrast microscopy, optical communication, and quantum photonics. To utilize vortex generators for integrated photonics, researchers have developed ultra-compact vortex generators using fork gratings, metasurfaces, and integrated microcombs. However, those devices depend on costly, time-consuming nanofabrication and are constrained by the low signal-to-noise ratio due to the fabrication error.

View Article and Find Full Text PDF

Thin-film lithium niobate (TFLN) has emerged as a promising platform for integrated photonics due to its exceptional material properties. The application of freeform topology optimization to TFLN devices enables the realization of compact designs with complex functionalities and high efficiency. However, the stringent fabrication constraints of TFLN present significant challenges for optimization, particularly in nonlinear photonic devices.

View Article and Find Full Text PDF

Investigating chiral light-matter interactions is essential for advancing applications in sensing, imaging, and pharmaceutical development. However, the chiroptical response in natural chiral molecules and subwavelength chiral structures is inherently weak, with the conventional characterization tools limited to optical methods that utilize circularly polarized light. To overcome this, optical vortex beams, characterized by helical wavefronts, have emerged as a compelling research focus.

View Article and Find Full Text PDF

Optical vortices (OVs) have rapidly varying spatial phase and optical energy that circulates around points or lines of zero optical intensity. Manipulation of OVs offers innovative approaches for various fields, such as optical sensing, communication, and imaging. In this work, we demonstrate the correlation between OVs and absorption enhancement in two types of structures.

View Article and Find Full Text PDF