Publications by authors named "Mohit Sachdeva"

Dysregulated miRNAs have been implicated in the pathogenesis of systemic lupus erythematosus (SLE). Our previous study reported a substantial increase in three miRNAs located at the miR-183-96-182 cluster (miR-183C) in several autoimmune lupus-prone mice, including MRL/lpr and C57BL/6-lpr (B6/lpr). This study reports that inhibition of miR-182 alone or miR-183C by specific antagomirs in activated splenocytes from autoimmune-prone MRL/lpr and control MRL mice significantly reduced lupus-related inflammatory cytokines, interferon-gamma (IFNγ), and IL-6 production.

View Article and Find Full Text PDF

One of the mechanisms by which cancer cells acquire hyperinvasive and migratory properties with progressive loss of epithelial markers is the epithelial-to-mesenchymal transition (EMT). We have previously reported that in different cancer types, including nonsmall cell lung cancer (NSCLC), the microRNA-183/96/182 cluster (m96cl) is highly repressed in cells that have undergone EMT. In the present study, we used a novel conditional m96cl mouse to establish that loss of m96cl accelerated the growth of Kras mutant autochthonous lung adenocarcinomas.

View Article and Find Full Text PDF

The COVID-19 pandemic poses unique challenges within the austere clinical setting, and the time between patient presentation and deterioration is a critical opportunity for intervention. In some cases, this may be a life-saving transfer to a higher level of care. US Central Command (CENTCOM) has provided valuable guidance for COVID-19 management in the operational environment,1 and has proposed the National Early Warning System 2 (NEWS2) scoring tool as a useful adjunct to gauging illness severity.

View Article and Find Full Text PDF

Decision-making related to the utilization of host-nation medical resources in austere forward-deployed environments is complex. Clinical circumstances, local medical intelligence availability, transportation assets, uncertainty regarding standard-of-care variations, military/host-nation funding complications, and regional security concerns all factor into consideration. A case of a U.

View Article and Find Full Text PDF

Soft-tissue sarcomas (STS) are rare malignancies showing lineage differentiation toward diverse mesenchymal tissues. Half of all high-grade STSs develop lung metastasis with a median survival of 15 months. Here, we used a genetically engineered mouse model that mimics undifferentiated pleomorphic sarcoma (UPS) to study the molecular mechanisms driving metastasis.

View Article and Find Full Text PDF

Oil palm breeding involves crossing dura and pisifera palms to produce tenera progeny with greatly improved oil yield. Oil yield is controlled by variant alleles of a type II MADS-box gene, SHELL, that impact the presence and thickness of the endocarp, or shell, surrounding the fruit kernel. We identified six novel SHELL alleles in noncommercial African germplasm populations from the Malaysian Palm Oil Board.

View Article and Find Full Text PDF

Endowing chimeric antigen receptor (CAR) T cells with additional potent functionalities holds strong potential for improving their antitumor activity. However, because potency could be deleterious without control, these additional features need to be tightly regulated. Immune pathways offer a wide array of tightly regulated genes that can be repurposed to express potent functionalities in a highly controlled manner.

View Article and Find Full Text PDF

Chimeric antigen receptor T-cell (CAR T-cell) therapy has been shown to be clinically effective for managing a variety of hematological cancers. However, CAR T-cell therapy is associated with multiple adverse effects, including neurotoxicity and cytokine release syndrome (CRS). CRS arises from massive cytokine secretion and can be life-threatening, but it is typically managed with an anti-IL-6Ra mAb or glucocorticoid administration.

View Article and Find Full Text PDF

Cancer results from the accumulation of genetic mutations in a susceptible cell of origin. We and others have also shown that injury promotes sarcoma development, but how injury cooperates with genetic mutations at the earliest stages of tumor formation is not known. Here, we utilized dual recombinase technology to dissect the complex interplay of the timing of KrasG12D activation, p53 deletion, and muscle injury in sarcomagenesis using a primary mouse model of soft tissue sarcoma.

View Article and Find Full Text PDF

Accumulating evidence indicates that microRNAs (miRs) regulate cancer metastasis. We have shown that miR-182 drives sarcoma metastasis in vivo by coordinated regulation of multiple genes. Recently, we also demonstrated that in a subset of primary sarcomas that metastasize to the lung, miR-182 expression is elevated through binding of MyoD1 to the miR-182 promoter.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) can regulate tumor cell invasion and metastasis in a tumor-specific manner. We recently demonstrated that global downregulation of miRNAs after deleting dicer can promote development of distant metastases in a mouse model of primary soft tissue sarcoma (STS). In this study, we identified miRNAs that are differentially downregulated in metastatic STS in both human and mouse, and investigated the role of these miRNAs in metastasis.

View Article and Find Full Text PDF

Hypoxia is a major cause of radiation resistance, which may predispose to local recurrence after radiation therapy. While hypoxia increases tumor cell survival after radiation exposure because there is less oxygen to oxidize damaged DNA, it remains unclear whether signaling pathways triggered by hypoxia contribute to radiation resistance. For example, intratumoral hypoxia can increase hypoxia inducible factor 1 alpha (HIF-1α), which may regulate pathways that contribute to radiation sensitization or radiation resistance.

View Article and Find Full Text PDF

Metastasis causes most cancer deaths, but is incompletely understood. MicroRNAs can regulate metastasis, but it is not known whether a single miRNA can regulate metastasis in primary cancer models in vivo. We compared the expression of miRNAs in metastatic and nonmetastatic primary mouse sarcomas and found that microRNA-182 (miR-182) was markedly overexpressed in some tumors that metastasized to the lungs.

View Article and Find Full Text PDF

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, whereas undifferentiated pleomorphic sarcoma (UPS) is one of the most common soft tissue sarcomas diagnosed in adults. To investigate the myogenic cell(s) of origin of these sarcomas, we used Pax7-CreER and MyoD-CreER mice to transform Pax7(+) and MyoD(+) myogenic progenitors by expressing oncogenic Kras(G12D) and deleting Trp53 in vivo. Pax7-CreER mice developed RMS and UPS, whereas MyoD-CreER mice developed UPS.

View Article and Find Full Text PDF

Soft-tissue sarcomas are a heterogeneous group of tumors arising from connective tissue. Recently, mutations in the neurofibromin 1 (NF1) tumor suppressor gene were identified in multiple subtypes of human soft-tissue sarcomas. To study the effect of NF1 inactivation in the initiation and progression of distinct sarcoma subtypes, we have developed a novel mouse model of temporally and spatially restricted NF1-deleted sarcoma.

View Article and Find Full Text PDF

MicroRNAs are master gene regulators that can also be under the control of transcriptional regulation. We have previously shown that miR-145 is a tumor suppressor capable of silencing c-Myc and the tumor suppressor p53 induces miR-145 by directly binding to the miR-145 promoter, demonstrating the role of miR-145 in p53-mediated c-Myc repression. However, little is known as to why miR-145 is often downregulated in tumors.

View Article and Find Full Text PDF

MicroRNAs are a large group of negative gene regulators that work through a posttranscriptional repression mechanism. Evidence indicates that microRNAs play a fundamental role in a wide range of biological functions such as cellular proliferation, differentiation and apoptosis. In cancer, microRNAs may function as tumor suppressors and oncogenes, and therefore, they are referred to as 'oncomiRs'.

View Article and Find Full Text PDF

Several hormones are well known for their role in tumorigenesis. Among them estrogen is the best characterized hormone. In particular, stromal tissue-produced estrogen plays a key role in breast tumor development and progression, highlighting the importance of communications between stromal tissue and tumor cells in the tumor microenvironment.

View Article and Find Full Text PDF

MicroRNAs are important gene regulators that could play a profound role in tumorigenesis. Our previous studies indicate that miR-145 is a tumor suppressor capable of inhibiting tumor cell growth both in vitro and in vivo. In this study, we show that miR-145 exerts its function in a cell-specific manner.

View Article and Find Full Text PDF

The tumor suppressor p53 negatively regulates a number of genes, including the proto-oncogene c-Myc, in addition to activating many other genes. One mechanism of the p53-mediated c-Myc repression may involve transcriptional regulation. However, it is not clear whether microRNAs (miRNAs) play a role in the p53-mediated posttranscriptional regulation of c-Myc.

View Article and Find Full Text PDF