Cage-shaped protein (CSP) complexes are frequently used in bionanotechnology, and they have a variety of different architectures and sizes. The smallest cage-shaped protein, Dps (DNA binding protein from starved cells), can naturally form iron oxide biominerals in a multistep process of ion attraction, translocation, oxidation, and nucleation. The structural basis of this biomineralization mechanism is still unclear.
View Article and Find Full Text PDFIron storage in biology is carried out by cage-shaped proteins of the ferritin superfamily, one of which is the dodecameric protein Dps. In Dps, four distinct steps lead to the formation of metal nanoparticles: attraction of ion-aquo complexes to the protein matrix, passage of these complexes through translocation pores, oxidation of these complexes at ferroxidase centers, and, ultimately, nanoparticle formation. In this study, we investigated Dps from to structurally characterize these steps for Co, Zn, and La ions.
View Article and Find Full Text PDFMany important biomedical applications, such as cell imaging and remote manipulation, can be achieved by labeling cells with superparamagnetic iron oxide nanoparticles (SPIONs). Achieving sufficient cellular uptake of SPIONs is a challenge that has traditionally been met by exposing cells to elevated concentrations of SPIONs or by prolonging exposure times (up to 72 hr). However, these strategies are likely to mediate toxicity.
View Article and Find Full Text PDFTrends Biochem Sci
February 2016
Iron oxide biomineralization occurs in all living organisms and typically involves protein compartments ranging from 5 to 100nm in size. The smallest iron-oxo particles are formed inside dodecameric Dps protein cages, while the structurally related ferritin compartments consist of twice as many identical protein subunits. The largest known compartments are encapsulins, icosahedra made of up to 180 protein subunits that harbor additional ferritin-like proteins in their interior.
View Article and Find Full Text PDFThe first six peptides of multifunctional titanium binding peptide-1 bestowed recombinant L-ferritin, minT1-LF, was genetically engineered and used to fabricate multilayered nanoparticle architecture. The multifunctionality of minT1-LF enables specific binding of nanoparticle-accommodated minT1-LF to the silicon substrate surface and wet biochemical fabrication of gate oxide layer by its biomineralization activity. Three-dimensional (3D) nanoparticle architecture with multilayered structure was fabricated by the biological layer-by-layer method and embedded in a metal oxide-semiconductor device structure as a charge storage node of a flash memory device.
View Article and Find Full Text PDFNanotechnology
October 2012
The synthesis of magnetic, monodisperse nanoparticles has attracted great interest in nanoelectronics and nanomedicine. Here we report the fabrication of pure magnetite nanoparticles, less than ten nanometers in size, using the cage-shaped protein apoferritin (Fe(3)O(4)-ferritin). Crystallizable proteins were obtained through careful successive separation methods, including a magnetic chromatography that enabled the effective separation of proteins, including a Fe(3)O(4) nanoparticle (7.
View Article and Find Full Text PDFThe mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer.
View Article and Find Full Text PDFThe adhesion process of osteoblast-like cells on hydroxyapatite (HAp) and oxidized polystyrene (PSox) was investigated using a quartz crystal microbalance with dissipation (QCM-D), confocal laser scanning microscope (CLSM), and atomic force microscope (AFM) techniques in order to clarify the interfacial phenomena between the surfaces and cells. The interfacial viscoelastic properties (shear viscosity (η(ad)), elastic shear modulus (μ(ad)), and tan δ) of the preadsorbed protein layer and the interface layer between the surfaces and cells were estimated using a Voigt-based viscoelastic model from the measured frequency (Δf) and dissipation shift (ΔD) curves. In the ΔD-Δf plots, the cell adhesion process on HAp was classified as (1) a mass increase only, (2) increases in both mass and ΔD, and (3) slight decreases in mass and ΔD.
View Article and Find Full Text PDFWe report here, for the first time, a biotemplated synthesis of uniform CdSe nanoparticle (4.1 ± 0.5 nm) and a fabrication of two-dimensional CdSe nanoparticles (over one micrometre) with nanometric gaps by cage-like protein, Listeria-Dps.
View Article and Find Full Text PDFJ Electron Microsc (Tokyo)
July 2010
Magnetic nanoparticle (MNP) composites with a magnetite (Fe(3)O(4)) core and a hydroxyapatite (HAp, Ca(10)(PO(4))(6)(OH)(2)) coating were prepared using a precipitation method and a subsequent hydrothermal treatment. The hydrothermal treatment diminished the lepidocrocite layer on the magnetite, enhanced the crystal growth of HAp and dissolved the MNPs. The divalent iron ions dissolved into solvent were not substituted for the HAp lattice.
View Article and Find Full Text PDFElemental distribution of calcium, phosphorus, oxygen, and carbon in a single collagen fibril obtained from tilapia fish scales was identified with an electron energy-loss spectroscopy and an energy-filtered transmission electron microscopy, for the first time. The carbon intensity profile of the single collagen fibril showed the specific D-periodic pattern at 67 nm of type I collagen fibrils. The calcium L(2,3)-edge and oxygen K-edge peak positions were detected at 347/350 eV and 137 eV, respectively, and these positions were identical to those of hydroxyapatite.
View Article and Find Full Text PDFCavities formed by proteins have been utilized as the reaction chamber for the fabrication of a range of inorganic nanoparticles, providing control of the size of particles by limiting growth and preventing agglomeration. In crystal form, proteins construct molecular arrays that can provide regularly arranged sites for nanoparticles. Here we report the fabrication of nanometric iron and indium particles using ferritin, an iron-storage protein.
View Article and Find Full Text PDFBiotechnol Bioeng
October 2003
The iron storage protein, apoferritin, has a cavity in which iron is oxidized and stored as a hydrated oxide core. The size of the core is about 7 nm in diameter and is regulated by the cavity size. The cavity can be utilized as a nanoreactor to grow inorganic crystals.
View Article and Find Full Text PDF