A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Metal Positions and Translocation Pathways of the Dodecameric Ferritin-like Protein Dps. | LitMetric

Metal Positions and Translocation Pathways of the Dodecameric Ferritin-like Protein Dps.

Inorg Chem

Unidad de Biofisica, Consejo Superior de Investigaciones Científicas , Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC, UPV/EHU) , Barrio Sarriena s/n, Leioa , 48940 Leioa , Basque Country , Spain.

Published: September 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Iron storage in biology is carried out by cage-shaped proteins of the ferritin superfamily, one of which is the dodecameric protein Dps. In Dps, four distinct steps lead to the formation of metal nanoparticles: attraction of ion-aquo complexes to the protein matrix, passage of these complexes through translocation pores, oxidation of these complexes at ferroxidase centers, and, ultimately, nanoparticle formation. In this study, we investigated Dps from to structurally characterize these steps for Co, Zn, and La ions. The structures reveal that differences in their ion coordination chemistry determine alternative metal ion-binding sites on the areas of the surface surrounding the translocation pore that captures nine La, three Co, or three Zn ions as aquo clusters and passes them on for translocation. Inside these pores, ion-selective conformational changes at key residues occur before a gating residue to actively move ions through the constriction zone. Ions upstream of the Asp130 gate residue are typically hydrated, while ions downstream directly interact with the protein matrix. Inside the cavity, ions move along negatively charged residues to the ferroxidase center, where seven main residues adapt to the three different ions by dynamically changing their conformations. In total, we observed more than 20 metal-binding sites per Dps monomer, which clearly highlights the metal-binding capacity of this protein family. Collectively, our results provide a detailed structural description of the preparative steps for amino acid-assisted biomineralization in Dps proteins, demonstrating unexpected protein matrix plasticity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.9b00301DOI Listing

Publication Analysis

Top Keywords

protein matrix
12
protein dps
8
three ions
8
ions
7
protein
6
dps
6
metal positions
4
translocation
4
positions translocation
4
translocation pathways
4

Similar Publications