Publications by authors named "Minxin Huang"

Glioblastoma (GBM) remains difficult to treat due to poor drug delivery across the blood-brain barrier and an immunosuppressive tumor microenvironment (TME). Tumor-suppressive microRNAs (miRNAs) offer a promising strategy to reprogram both tumor cells and the TME, but inefficient delivery systems limit their clinical application. We previously reported that tumor-suppressive miR-138 regresses tumor growth in preclinical GBM models.

View Article and Find Full Text PDF

Background: The FDA approval of oncolytic herpes simplex-1 virus (oHSV) therapy underscores its therapeutic promise and safety as a cancer immunotherapy. Despite this promise, the current efficacy of oHSV is significantly limited to a small subset of patients largely due to the resistance in tumor and tumor microenvironment (TME).

Methods: RNA sequencing (RNA-Seq) was used to identify molecular targets of oHSV resistance.

View Article and Find Full Text PDF

Fully convolutional neural network (FCN) has achieved great success in semantic segmentation. However, the performance of the FCN is generally compromised for multi-object segmentation. Multi-organ segmentation is very common while challenging in the field of medical image analysis, where organs largely vary with scales.

View Article and Find Full Text PDF

We propose a new exact quantization condition for a class of quantum mechanical systems derived from local toric Calabi-Yau threefolds. Our proposal includes all contributions to the energy spectrum which are nonperturbative in the Planck constant, and is much simpler than the available quantization condition in the literature. We check that our proposal is consistent with previous works and implies nontrivial relations among the topological Gopakumar-Vafa invariants of the toric Calabi-Yau geometries.

View Article and Find Full Text PDF