Electro-optic active metasurfaces have attracted attention due to their ability to electronically control optical wavefronts with unprecedented spatiotemporal resolutions. In most studies, such devices require gate arrays composed of a large number of independently-controllable local gate electrodes that address the local scattering response of individual metaatoms. Although this approach in principle enables arbitrary wavefront control, the complicated driving mechanism and low optical efficiency have been hindering its practical applications.
View Article and Find Full Text PDFNanophotonics
April 2025
It has long been desired to enable global structural optimization of organic light-emitting diodes (OLEDs) for maximal light extraction. The most critical obstacles to achieving this goal are time-consuming optical simulations and discrepancies between simulation and experiment. In this work, by leveraging transfer learning, we demonstrate that fast and reliable prediction of OLED optical properties is possible with several times higher data efficiency compared to previously demonstrated surrogate solvers based on artificial neural networks.
View Article and Find Full Text PDFPolaritonic crystals - periodic structures where the hybrid light-matter waves called polaritons can form Bloch states - promise a deeply subdiffractional nanolight manipulation and enhanced light-matter interaction. In particular, polaritons in van der Waals materials boast extreme field confinement and long lifetimes allowing for the exploitation of wave phenomena at the nanoscale. However, in conventionally patterned nanostructures, polaritons are prone to severe scattering loss at the sharp material edges, making it challenging to create functional polaritonic crystals.
View Article and Find Full Text PDFFinding an optimal device structure in the vast combinatorial design space of freeform nanophotonic design has been an enormous challenge. In this study, we propose physics-informed reinforcement learning (PIRL) that combines the adjoint-based method with reinforcement learning to improve the sample efficiency by an order of magnitude compared to conventional reinforcement learning and overcome the issue of local minima. To illustrate these advantages of PIRL over other conventional optimization algorithms, we design a family of one-dimensional metasurface beam deflectors using PIRL, exceeding most reported records.
View Article and Find Full Text PDFNanophotonics
August 2024
Over the past decade, significant advancements in high-resolution imaging technology have been driven by the miniaturization of pixels within image sensors. However, this reduction in pixel size to submicrometer dimensions has led to decreased efficiency in color filters and microlens arrays. The development of color routers that operate at visible wavelengths presents a promising avenue for further miniaturization.
View Article and Find Full Text PDFNanophotonics
August 2024
Recent advancements in inverse design approaches, exemplified by their large-scale optimization of all geometrical degrees of freedom, have provided a significant paradigm shift in photonic design. However, these innovative strategies still require full-wave Maxwell solutions to compute the gradients concerning the desired figure of merit, imposing, prohibitive computational demands on conventional computing platforms. This review analyzes the computational challenges associated with the design of large-scale photonic structures.
View Article and Find Full Text PDFThree-dimensional optical nanostructures have garnered significant interest in photonics due to their extraordinary capabilities to manipulate the amplitude, phase, and polarization states of light. However, achieving complex three-dimensional optical nanostructures with bottom-up fabrication has remained challenging, despite its nanoscale precision and cost-effectiveness, mainly due to inherent limitations in structural controllability. Here, we report the optical characteristics of intricate two- and three-dimensional nanoarchitectures made of colloidal quantum dots fabricated with multi-dimensional transfer printing.
View Article and Find Full Text PDF2D van der Waals heterojunctions (vdWH) have emerged as an attractive platform for the realization of optoelectronic synaptic devices, which are critical for energy-efficient computing systems. Photogating induced by charge traps at the interfaces indeed results in ultrahigh responsivity and tunable photoconductance. Yet, optical potentiation and depression remain mostly modulated by gate bias, requiring relatively high energy inputs.
View Article and Find Full Text PDFWe theoretically describe and experimentally demonstrate a graphene-integrated metasurface structure that enables electrically-tunable directional control of thermal emission. This device consists of a dielectric spacer that acts as a Fabry-Perot resonator supporting long-range delocalized modes bounded on one side by an electrostatically tunable metal-graphene metasurface. By varying the Fermi level of the graphene, the accumulated phase of the Fabry-Perot mode is shifted, which changes the direction of absorption and emission at a fixed frequency.
View Article and Find Full Text PDFWe, for the first time, report the nanoscopic imaging study of anomalous infrared (IR) phonon enhancement of bilayer graphene, originated from the charge imbalance between the top and bottom layers, resulting in the enhancement of E mode of bilayer graphene near 0.2 eV. We modified the multifrequency atomic force microscope platform to combine photo-induced force microscope with electrostatic/Kelvin probe force microscope constituting a novel hybrid nanoscale optical-electrical force imaging system.
View Article and Find Full Text PDFMetasurface-based color splitters are emerging as next-generation optical components for image sensors, replacing classical color filters and microlens arrays. In this work, we report how the design parameters such as the device dimensions and refractive indices of the dielectrics affect the optical efficiency of the color splitters. Also, we report how the design grid resolution parameters affect the optical efficiency and discover that the fabrication of a color splitter is possible even in legacy fabrication facilities with low structure resolutions.
View Article and Find Full Text PDFWe present an electrochemical method to functionalize single-crystal graphene grown on copper foils with a (111) surface orientation by chemical vapor deposition (CVD). Graphene on Cu(111) is functionalized with 4-iodoaniline by applying a constant negative potential, and the degree of functionalization depends on the applied potential and reaction time. Our approach stands out from previous methods due to its transfer-free method, which enables more precise and efficient functionalization of single-crystal graphene.
View Article and Find Full Text PDFLaser sails propelled by gigawatt-scale ground-based laser arrays have the potential to reach relativistic speeds, traversing the solar system in hours and reaching nearby stars in years. Here, we describe the danger interplanetary dust poses to the survival of a laser sail during its acceleration phase. We show through multiphysics simulations how localized heating from a single optically absorbing dust particle on the sail can initiate a thermal runaway process that rapidly spreads and destroys the entire sail.
View Article and Find Full Text PDFNear-perfect light absorbers (NPLAs), with absorbance, [Formula: see text], of at least 99%, have a wide range of applications ranging from energy and sensing devices to stealth technologies and secure communications. Previous work on NPLAs has mainly relied upon plasmonic structures or patterned metasurfaces, which require complex nanolithography, limiting their practical applications, particularly for large-area platforms. Here, we use the exceptional band nesting effect in TMDs, combined with a Salisbury screen geometry, to demonstrate NPLAs using only two or three uniform atomic layers of transition metal dichalcogenides (TMDs).
View Article and Find Full Text PDFIncreasing the light extraction efficiency has been widely studied for highly efficient organic light-emitting diodes (OLEDs). Among many light-extraction approaches proposed so far, adding a corrugation layer has been considered a promising solution for its simplicity and high effectiveness. While the working principle of periodically corrugated OLEDs can be qualitatively explained by the diffraction theory, dipolar emission inside the OLED structure makes its quantitative analysis challenging, making one rely on finite-element electromagnetic simulations that could require huge computing resources.
View Article and Find Full Text PDFMonoclon Antib Immunodiagn Immunother
April 2023
Nat Nanotechnol
February 2023
Modulating semiconducting channel potential has been used for electrical switching in transistors without biological plasticity operations that are critical for energy-efficient neuromorphic computing. To achieve efficient data processing, alternative transport mechanisms, such as tunneling and thermionic emission, have been introduced with 2D materials. Here, a polymorphic memtransistor based on atomically thin Mo W Te is presented, where the lattice and electronic structures of the lateral device channel can be tuned as either metallic (1T') or semiconducting (2H) phases by electrical gating.
View Article and Find Full Text PDFAdv Healthc Mater
January 2023
Wearable light-emitting diode (LED)-based phototherapeutic devices have recently attracted attention as skin care tools for wrinkles, acne, and hyperpigmentation. However, the therapeutic effectiveness and safety of LED stimulators are still controversial due to their inefficient light transfer, high heat generation, and non-uniform spot irradiation. Here, a wearable surface-lighting micro-LED (SµLED) photostimulator is reported for skin care and cosmetic applications.
View Article and Find Full Text PDFActive metasurfaces have been proposed as one attractive means of achieving high-resolution spatiotemporal control of optical wavefronts, having applications such as LIDAR and dynamic holography. However, achieving full, dynamic phase control has been elusive in metasurfaces. In this paper, we unveil an electrically tunable metasurface design strategy that operates near the avoided crossing of two resonances, one a spectrally narrow, over-coupled resonance and the other with a high resonance frequency tunability.
View Article and Find Full Text PDFPhoto-modulation is a promising strategy for contactless and ultrafast control of optical and electrical properties of photoactive materials. Graphene is an attractive candidate material for photo-modulation due to its extraordinary physical properties and its relevance to a wide range of devices, from photodetectors to energy converters. In this review, we survey different strategies for photo-modulation of electrical and optical properties of graphene, including photogating, generation of hot carriers, and thermo-optical effects.
View Article and Find Full Text PDFNanophotonics
April 2022
Nanophotonic devices have enabled microscopic control of light with an unprecedented spatial resolution by employing subwavelength optical elements that can strongly interact with incident waves. However, to date, most nanophotonic devices have been designed based on fixed-shape optical elements, and a large portion of their design potential has remained unexplored. It is only recently that free-form design schemes have been spotlighted in nanophotonics, offering routes to make a break from conventional design constraints and utilize the full design potential.
View Article and Find Full Text PDFPolaritonic modes in low-dimensional materials enable strong light-matter interactions and the manipulation of light on nanometer length scales. Very recently, a new class of polaritons has attracted considerable interest in nanophotonics: image polaritons in van der Waals crystals, manifesting when a polaritonic material is in close proximity to a highly conductive metal, so that the polaritonic mode couples with its mirror image. Image modes constitute an appealing nanophotonic platform, providing an unparalleled degree of optical field compression into nanometric volumes while exhibiting lower normalized propagation loss compared to conventional polariton modes in van der Waals crystals on nonmetallic substrates.
View Article and Find Full Text PDF