A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Large-scale photonic inverse design: computational challenges and breakthroughs. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent advancements in inverse design approaches, exemplified by their large-scale optimization of all geometrical degrees of freedom, have provided a significant paradigm shift in photonic design. However, these innovative strategies still require full-wave Maxwell solutions to compute the gradients concerning the desired figure of merit, imposing, prohibitive computational demands on conventional computing platforms. This review analyzes the computational challenges associated with the design of large-scale photonic structures. It delves into the adequacy of various electromagnetic solvers for large-scale designs, from conventional to neural network-based solvers, and discusses their suitability and limitations. Furthermore, this review evaluates the research on optimization techniques, analyzes their advantages and disadvantages in large-scale applications, and sheds light on cutting-edge studies that combine neural networks with inverse design for large-scale applications. Through this comprehensive examination, this review aims to provide insights into navigating the landscape of large-scale design and advocate for strategic advancements in optimization methods, solver selection, and the integration of neural networks to overcome computational barriers, thereby guiding future advancements in large-scale photonic design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465988PMC
http://dx.doi.org/10.1515/nanoph-2024-0127DOI Listing

Publication Analysis

Top Keywords

large-scale photonic
12
inverse design
12
large-scale
8
computational challenges
8
photonic design
8
design large-scale
8
large-scale applications
8
neural networks
8
design
7
photonic inverse
4

Similar Publications