Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We theoretically describe and experimentally demonstrate a graphene-integrated metasurface structure that enables electrically-tunable directional control of thermal emission. This device consists of a dielectric spacer that acts as a Fabry-Perot resonator supporting long-range delocalized modes bounded on one side by an electrostatically tunable metal-graphene metasurface. By varying the Fermi level of the graphene, the accumulated phase of the Fabry-Perot mode is shifted, which changes the direction of absorption and emission at a fixed frequency. We directly measure the frequency- and angle-dependent emissivity of the thermal emission from a fabricated device heated to 250 °C. Our results show that electrostatic control allows the thermal emission at 6.61 μm to be continuously steered over 16, with a peak emissivity maintained above 0.9. We analyze the dynamic behavior of the thermal emission steerer theoretically using a Fano interference model, and use the model to design optimized thermal steerer structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11032313PMC
http://dx.doi.org/10.1038/s41467-024-47229-0DOI Listing

Publication Analysis

Top Keywords

thermal emission
20
delocalized modes
8
thermal
6
emission
6
electrostatic steering
4
steering thermal
4
emission active
4
active metasurface
4
metasurface control
4
control delocalized
4

Similar Publications

The significant global energy consumption strongly emphasizes the crucial role of net-zero or green structures in ensuring a sustainable future. Considering this aspect, incorporating thermal insulation materials into building components is a well-accepted method that helps to enhance thermal comfort in buildings. Furthermore, integrating architectural components made from solid refuse materials retrieved from the environment can have significant environmental benefits.

View Article and Find Full Text PDF

High Performance Transmission-Type Daytime Radiative Cooling Film with a Simple and Scalable Method.

Adv Mater

September 2025

Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and International Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.

Transmission-type radiative cooling textiles represent a vital strategy for personal thermal management. However, traditional preparation methods based on heat-induced phase separation face significant challenges regarding cost, environmental impact, and optical performance. Herein, a novel preparation method is devloped by blending mid-IR transparent solid styrene ethylene butylene styrene (SEBS) with solid polyethylene (PE), enabling the creation of pores through dissolving SEBS.

View Article and Find Full Text PDF

B,N-substituted graphene ribbons are computationally designed and their spectroscopic properties are systematically explored with wave-function-based electronic structure methods. All B,N-graphene ribbons exhibit exceptionally small S-T energy gaps. The oscillator strength of the S-S transition increases monotonically with the length of the ribbons.

View Article and Find Full Text PDF

The iron nickel magnesium tetra-oxide (FeNiMgO) nanocomposites (NCs) first reported in this article were synthesized using the sol-gel method. For investigation using powder X-ray diffraction (PXRD), the presence of a cubic structure is confirmed. In Raman spectroscopy, the vibrational modes are investigated.

View Article and Find Full Text PDF

Buildings are increasingly being conceived as dynamic systems that interact with their surroundings to optimize energy performance and enhance occupant comfort. This evolution in architectural thinking draws inspiration from biological systems, where the building envelope functions like a thermally responsive "skin" that can autonomously adjust its optical and thermal properties in response to environmental temperature changes. Among the many approaches developed for smart building envelopes, passive thermoresponsive spectral modulation systems have attracted growing interest due to their structural simplicity and low energy demand.

View Article and Find Full Text PDF