Understanding the electronic structure of polycyclic aromatic compounds is of fundamental importance for their potential applications. The optoelectronic properties of shorter acenes such as tetracene and pentacene have been extensively studied with regard to excitation, emission, and nonlinear effects such as singlet fission. The longer homologues present a unique challenge due to their low stability both in the solid state and in solution.
View Article and Find Full Text PDFColloidal 2D PbX (X = S, Se, Te) nanocrystals are innovative materials pushing the boundaries of quantum confinement by combining crystal thicknesses down to a monolayer with additional confinement in the lateral dimension. These flat PbSe quantum dots (fQDs) exhibit telecommunication band photoluminescence (1.43-0.
View Article and Find Full Text PDFACS Appl Bio Mater
July 2025
Osteoarthritis (OA) is the leading cause of disability in adults worldwide. This debilitating disease is associated with a relatively high concentration of reactive oxygen species (ROS) and reduced pH in the joints. In this regard, we devised a two-pronged approach to treating OA that combines ROS neutralization and stimuli-responsive drug delivery.
View Article and Find Full Text PDFImplantation triggers critical morphological transformations in the embryo, where the epiblast transitions from a cluster of unpolarized cells into a highly organized, polarized epithelium characterized by a central lumen. Human pluripotent stem cells (hPSCs) are valuable models for studying this process, but conventional matrices like Matrigel have significant limitations, including variability and poor control over mechanical properties. To overcome these challenges, we developed a synthetic polyethylene glycol (PEG) hydrogel system with tunable mechanical stiffness to model peri-implantation epiblast morphogenesis.
View Article and Find Full Text PDFCardioids are 3D self-organized heart organoids directly derived from induced pluripotent stem cells (hiPSCs) aggregates. The growth and culture of cardioids is either conducted in suspension culture or heavily relies on Matrigel encapsulation. Despite the significant advancements in cardioid technology, reproducibility remains a major challenge, limiting their widespread use in both basic research and translational applications.
View Article and Find Full Text PDFTwo-dimensional (2D) metal-halide perovskites have promising characteristics for optoelectronic applications. By incorporating Mn ions into the perovskite structure, improved photoluminescence quantum yield can be achieved. This has been attributed to the formation of defect states that act as efficient recombination centers.
View Article and Find Full Text PDFThe "respect" approach to surgical mitral valve repair, which involves implanting artificial neochordae, is gaining increased adoption. Surgeons are possibly prone to error in the manual construction of neochordae, which can lead to prolonged cross-clamp times. Novel systems such as Chord-X Pre-Measured Loops (On-X Life Technologies, Inc.
View Article and Find Full Text PDFTrauma or repeated damage to joints can result in focal cartilage defects, significantly elevating the risk of osteoarthritis. Damaged cartilage has an inherently limited self-healing capacity and remains an urgent unmet clinical need. Consequently, there is growing interest in biodegradable hydrogels as potential scaffolds for the repair or reconstruction of cartilage defects.
View Article and Find Full Text PDFPHBV is a promising plastic for replacing conventional petroleum-based plastics in the future. However, the mechanical properties of PHBV are too low for use in high-stress applications and the degradation of the polymer limits possible applications. In this work, the mechanical properties were, therefore, increased using bio-based regenerated cellulose fibers and degradation processes of the PHBV-RCF composites were detected in accelerated aging tests under various environmental conditions.
View Article and Find Full Text PDFACS Biomater Sci Eng
July 2024
Lumenogenesis within the epiblast represents a critical step in early human development, priming the embryo for future specification and patterning events. However, little is known about the specific mechanisms that drive this process due to the inability to study the early embryo in vivo. While human pluripotent stem cell (hPSC)-based models recapitulate many aspects of the human epiblast, most approaches for generating these 3D structures rely on ill-defined, reconstituted basement membrane matrices.
View Article and Find Full Text PDFTransient Photoluminescence Microscopy (TPLM) allows for the direct visualization of carrier transport in semiconductor materials with sub nanosecond and few nanometer resolution. The technique is based on measuring changes in the spatial distribution of a diffraction limited population of carriers using spatiotemporal detection of the radiative decay of the carriers. The spatial resolution of TPLM is therefore primarily determined by the signal-to-noise-ratio (SNR).
View Article and Find Full Text PDFChem Commun (Camb)
March 2023
Correction for 'Distinct photodynamics of κ-N and κ-C pseudoisomeric iron(II) complexes' by Philipp Dierks , , 2021, , 6640-6643, https://doi.org/10.1039/D1CC01716K.
View Article and Find Full Text PDFUsing light to control matter has captured the imagination of scientists for generations, as there is an abundance of photons at our disposal. Yet delivering photons beyond the surface to many photoresponsive systems has proven challenging, particularly at scale, due to light attenuation via absorption and scattering losses. Triplet-triplet annihilation upconversion (TTA-UC), a process which allows for low energy photons to be converted to high energy photons, is poised to overcome these challenges by allowing for precise spatial generation of high energy photons due to its nonlinear nature.
View Article and Find Full Text PDFTriplet fusion upconversion (UC) allows for the generation of one high energy photon from two low energy input photons. This well-studied process has significant implications for producing high energy light beyond a material's surface. However, the deployment of UC materials has been stymied due to poor material solubility, high concentration requirements, and oxygen sensitivity, ultimately resulting in reduced light output.
View Article and Find Full Text PDFThree-dimensional (3D) printing has exploded in interest as new technologies have opened up a multitude of applications, with stereolithography a particularly successful approach. However, owing to the linear absorption of light, this technique requires photopolymerization to occur at the surface of the printing volume, imparting fundamental limitations on resin choice and shape gamut. One promising way to circumvent this interfacial paradigm is to move beyond linear processes, with many groups using two-photon absorption to print in a truly volumetric fashion.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
April 2022
Lanthanide-dependent enzymes and their biomimetic complexes have arisen as an interesting target of research in the past decade. These enzymes, specifically, pyrroloquinoline quinone (PQQ)-bearing methanol dehydrogenases, efficiently convert alcohols to the respective aldehydes. To rationally design bioinspired alcohol dehydrogenation catalysts, it is imperative to understand the species involved in catalysis.
View Article and Find Full Text PDFACS Energy Lett
January 2022
Halide mixing is one of the most powerful techniques to tune the optical bandgap of metal-halide perovskites. However, halide mixing has commonly been observed to result in phase segregation, which reduces excited-state transport and limits device performance. While the current emphasis lies on the development of strategies to prevent phase segregation, it remains unclear how halide mixing may affect excited-state transport even if phase purity is maintained.
View Article and Find Full Text PDFNovel BN-doped compounds based on chiral, tetrasubstituted [2.2]paracyclophane and NBN-benzo[f,g]tetracene were synthesized by Sonogashira-Hagihara coupling. Conjugated ethynyl linkers allow electronic communication between the π-electron systems through-bond, whereas through-space interactions are provided by strong π-π overlap between the pairs of NBN-building blocks.
View Article and Find Full Text PDFTwo-dimensional (2D) metal-halide perovskites are attractive for use in light harvesting and light emitting devices, presenting improved stability as compared to the more conventional three-dimensional perovskite phases. Significant attention has been paid to influencing the layer orientation of 2D perovskite phases, with the charge-carrier transport through the plane of the material being orders of magnitude more efficient than the interlayer transport. Importantly though, the thinnest members of the 2D perovskite family exhibit strong exciton binding energies, suggesting that interlayer energy transport mediated by dipole-dipole coupling may be relevant.
View Article and Find Full Text PDFIn spite of intense, recent research efforts, luminescent transition metal complexes with Earth-abundant metals are still very rare owing to the small ligand field splitting of 3d transition metal complexes and the resulting non-emissive low-energy metal-centered states. Low-energy excited states decay efficiently non-radiatively, so that near-infrared emissive transition metal complexes with 3d transition metals are even more challenging. We report that the heteroleptic pseudo-octahedral d-vanadium(iii) complex VCl(ddpd) (ddpd = ,'-dimethyl-,'-dipyridine-2-yl-pyridine-2,6-diamine) shows near-infrared singlet → triplet spin-flip phosphorescence maxima at 1102, 1219 and 1256 nm with a lifetime of 0.
View Article and Find Full Text PDFThe fission of singlet excitons into triplet pairs in organic materials holds great technological promise, but the rational application of this phenomenon is hampered by a lack of understanding of its complex photophysics. Here, we use the controlled introduction of vacancies by means of spacer molecules in tetracene and pentacene thin films as a tuning parameter complementing experimental observables to identify the operating principles of different singlet fission pathways. Time-resolved spectroscopic measurements in combination with microscopic modelling enables us to demonstrate distinct scenarios, resulting from different singlet-to-triplet pair energy alignments.
View Article and Find Full Text PDFGaining chemical control over the thermodynamics and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge transfer states described by spatially separated orbitals, the energies of spin-flip states cannot straightforwardly be predicted as Pauli repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chemical calculations, we report a novel highly luminescent spin-flip emitter with a quantum chemically predicted blue-shifted luminescence.
View Article and Find Full Text PDFChem Commun (Camb)
July 2021
Two closely related FeII complexes with 2,6-bis(1-ethyl-1H-1,2,3-triazol-4yl)pyridine and 2,6-bis(1,2,3-triazol-5-ylidene)pyridine ligands are presented to gain new insights into the photophysics of bis(tridentate) iron(ii) complexes. The [Fe(N^N^N)2]2+ pseudoisomer sensitizes singlet oxygen through a MC state with nanosecond lifetime after MLCT excitation, while the bis(tridentate) [Fe(C^N^C)2]2+ pseudoisomer possesses a similar 3MLCT lifetime as the tris(bidentate) [Fe(C^C)2(N^N)]2+ complexes with four mesoionic carbenes.
View Article and Find Full Text PDFCurr Probl Cardiol
September 2022
Bereavement due to loss of a partner is one of the most stressful life events, often leading to adverse physiological responses. Spousal loss has been associated with an increased morbidity and mortality, particularly from cardiovascular disease. Use of aspirin and/or beta adrenergic blockers have previously been suggested to play a role in cardiovascular risk associated with early bereavement.
View Article and Find Full Text PDF