Publications by authors named "Michael H Elliott"

Tetraspanins affect metastasis, stemness and angiogenesis, but their roles in inflammation remain to be further clarified. Here we show that endothelial ablation of tetraspanin Cd82 markedly reduces vascular inflammation by mitigating endothelial leakage. Mechanistically, by limiting the anchorages of Cdc42 activator FARP1 and RhoA inhibitor Rnd3 to the plasma membrane (PM), CD82 confines Cdc42 but maintains RhoA activity in endothelial cells, to facilitate endothelium activation.

View Article and Find Full Text PDF

Polymorphisms in Nos3 increase risk for glaucoma, the leading cause of irreversible blindness worldwide. A key modifiable risk factor for glaucoma is intraocular pressure (IOP), which is regulated by NO - a product of nitric oxide synthase 3 (encoded by Nos3) - in Schlemm's canal of the conventional outflow pathway. We studied the effects of a conditional, endothelial cell-specific postnatal deletion of Nos3 (Endo-SclCre-ERT;Nos3fl/fl) on tissues of the outflow pathway.

View Article and Find Full Text PDF

The innate ability to produce neurotrophic cytokines is a crucial component of retinal neuroprotection. Reduced levels of these cytokines accelerate neuronal cell death in the retina during injury but prolonged overexpression can lead to inflammation and retinal damage. It is therefore critical to find molecular targets that regulate the endogenous production of retinal neurotrophic factors.

View Article and Find Full Text PDF

Intraocular pressure (IOP) elevation is the primary risk factor and currently the main treatable factor for progression of glaucomatous optic neuropathy. In addition to direct clinical and living animal in vivo studies, ex vivo perfusion of anterior segments and whole eyes is a key technique for studying conventional outflow function as it is responsible for IOP regulation. We present well-tested experimental details, protocols, considerations, advantages, and limitations of several ex vivo model systems for studying IOP regulation.

View Article and Find Full Text PDF
Article Synopsis
  • Endothelial cells exhibit differences based on their specific location in the body, particularly within the eye where retinal and choroidal vascular beds have unique functions and structures essential for maintaining retinal health.
  • A new experimental approach was developed to study the gene expression of endothelial cells from the choroid, retina, and brain, addressing challenges of isolating sufficient quantities of these cells for analysis.
  • Comparative analysis using two types of mouse models highlighted distinct gene expressions and pathways for endothelial cells across tissues, revealing a significant overlap in differentially expressed genes and predicting unique functional roles for endothelial cells in retinal and choroidal health.
View Article and Find Full Text PDF

Aging is the main risk factor for age-related macular degeneration (AMD), a retinal neurodegenerative disease that leads to irreversible blindness, particularly in people over 60 years old. Retinal pigmented epithelium (RPE) atrophy is an AMD hallmark. Genome-wide chromatin accessibility, DNA methylation, and gene expression studies of AMD and control RPE demonstrate epigenomic/transcriptomic changes occur during AMD onset and progression.

View Article and Find Full Text PDF

Pseudoexfoliation syndrome (PEX) is a systemic, age-related disorder characterized by elastosis and extracellular matrix deposits. Its most significant ocular manifestation is an aggressive form of glaucoma associated with variants in the gene encoding lysyl oxidase-like 1 (LOXL1). Depending upon the population, variants in LOXL1 can impart risk or protection for PEX, suggesting the importance of genetic context.

View Article and Find Full Text PDF

Caveolin-1 (Cav1), the core structural and scaffolding protein of caveolae membrane domains, is highly expressed in many retinal cells and is associated with ocular diseases. Cav1 regulates innate immune responses and is implicated in neuroinflammatory and neuroprotective signaling in the retina. We have shown that Cav1 expression in Müller glia accounts for over 70% of all retinal Cav1 expression.

View Article and Find Full Text PDF

The original concept that lipid and protein components are randomly distributed in cellular membranes has been challenged by evidence of compartmentalization of such components into discrete membrane microdomains (known as lipid rafts). The lipid microdomain hypothesis has generated significant controversy and rigorous inquiry to test the idea that such domains concentrate machinery to mediate cellular processes such as signaling, synaptic plasticity, and endocytosis. As such, a large number of studies have used biochemical, cell biological, and biophysical methodologies to define the composition of membrane microdomains in experimental contexts.

View Article and Find Full Text PDF

Analysis of retina cell type-specific epigenetic and transcriptomic signatures is crucial to understanding the pathophysiology of retinal degenerations such as age-related macular degeneration (AMD) and delineating cell autonomous and cell-non-autonomous mechanisms. We have discovered that Aldh1l1 is specifically expressed in the major macroglia of the retina, Müller glia, and, unlike the brain, is not expressed in retinal astrocytes. This allows use of Aldh1l1 cre drivers and Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) constructs for temporally controlled labeling and paired analysis of Müller glia epigenomes and translatomes.

View Article and Find Full Text PDF

We have previously reported the flavonoid, quercetin, as a metabolic regulator and inhibitor of myofibroblast differentiation in vitro. Our current study evaluated the effects of topical application of quercetin on corneal scar development using two different animal models followed by RNA analysis in vitro. Wild-type C57BL/6J mice were anesthetized and the corneal epithelium and stroma were manually debrided, followed by quercetin (0.

View Article and Find Full Text PDF

Caveolae, specialized plasma membrane invaginations present in most cell types, play important roles in multiple cellular processes including cell signaling, lipid uptake and metabolism, endocytosis and mechanotransduction. They are found in almost all cell types but most abundant in endothelial cells, adipocytes and fibroblasts. Caveolin-1 (Cav1), the signature structural protein of caveolae was the first protein associated with caveolae, and in association with Cavin1/PTRF is required for caveolae formation.

View Article and Find Full Text PDF

Polymorphisms in the CAV1/2 gene loci impart increased risk for primary open-angle glaucoma (POAG). CAV1 encodes caveolin-1 (Cav1), which is required for biosynthesis of plasma membrane invaginations called caveolae. Cav1 knockout mice exhibit elevated intraocular pressure (IOP) and decreased outflow facility, but the mechanistic role of Cav1 in IOP homeostasis is unknown.

View Article and Find Full Text PDF

Age-related cerebrovascular defects contribute to vascular cognitive impairment and dementia (VCID) as well as other forms of dementia. There has been great interest in developing biomarkers and other tools for studying cerebrovascular disease using more easily accessible tissues outside the brain such as the retina. Decreased circulating insulin-like growth factor 1 (IGF-1) levels in aging are thought to contribute to the development of cerebrovascular impairment, a hypothesis that has been supported by the use of IGF-1 deficient animal models.

View Article and Find Full Text PDF

Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension.

View Article and Find Full Text PDF

Despite the association of cholesterol with debilitating pressure-related diseases such as glaucoma, heart disease, and diabetes, its role in mechanotransduction is not well understood. We investigated the relationship between mechanical strain, free membrane cholesterol, actin cytoskeleton, and the stretch-activated transient receptor potential vanilloid isoform 4 (TRPV4) channel in human trabecular meshwork (TM) cells. Physiological levels of cyclic stretch resulted in time-dependent decreases in membrane cholesterol/phosphatidylcholine ratio and upregulation of stress fibers.

View Article and Find Full Text PDF

Uncontrolled inflammation is associated with neurodegenerative conditions in central nervous system tissues, including the retina and brain. We previously found that the neural retina (NR) plays an important role in retinal immunity. Tumor necrosis factor Receptor-Associated Factor 3 (TRAF3) is a known immune regulator expressed in the retina; however, whether TRAF3 regulates retinal immunity is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Impaired migration of keratinocytes is a key issue in chronic wounds like diabetic foot ulcers (DFUs) and venous leg ulcers (VLUs), but the exact reasons for this problem are not well understood.
  • This study finds that DFUs and VLUs show significant changes in cytoskeletal structure compared to normal skin, particularly involving the downregulation of ArhGAP35, which normally helps regulate cell movement.
  • Elevated levels of caveolin-1 (Cav1) in chronic wounds disrupt the function of ArhGAP35, leading to increased RhoA activity and reduced Cdc42 activation, ultimately slowing down healing; however, targeting Cav1 can improve wound closure.
View Article and Find Full Text PDF

Purpose: The immune-privileged environment and complex organization of retinal tissue support the retina's essential role in visual function, yet confound inquiries into cell-specific inflammatory effects that lead to dysfunction and degeneration. Caveolin-1 (Cav1) is an integral membrane protein expressed in several retinal cell types and is implicated in immune regulation. However, whether Cav1 promotes or inhibits inflammatory processes in the retina (as well as in other tissues) remains unclear.

View Article and Find Full Text PDF

During the progression of ocular diseases such as retinopathy of prematurity and diabetic retinopathy, overgrowth of retinal blood vessels results in the formation of pathological neovascular tufts that impair vision. Current therapeutic options for treating these diseases include antiangiogenic strategies that can lead to the undesirable inhibition of normal vascular development. Therefore, strategies that eliminate pathological neovascular tufts while sparing normal blood vessels are needed.

View Article and Find Full Text PDF

Purpose: Polymorphisms at the caveolin-1/2 locus are associated with glaucoma and IOP risk and deletion of caveolin-1 (Cav1) in mice elevates IOP and reduces outflow facility. However, the specific location/cell type responsible for Cav1-dependent regulation of IOP is unclear. We hypothesized that endothelial Cav1 in the conventional outflow (CO) pathway regulate IOP via endothelial nitric oxide synthase (eNOS) signaling.

View Article and Find Full Text PDF

Lysyl oxidase-like-1 (LOXL1), a vital crosslinking enzyme in elastin fiber maintenance, is essential for the stability and strength of elastic vessels and tissues. Variants in the LOXL1 locus associate with a dramatic increase in risk of exfoliation syndrome (XFS), a systemic fibrillopathy, which often presents with ocular hypertension and exfoliation glaucoma (XFG). We examined the role of LOXL1 in conventional outflow function, the prime regulator of intraocular pressure (IOP).

View Article and Find Full Text PDF

Although the retina resides within the immune-protected ocular environment, inflammatory processes mounted in the eye can lead to retinal damage. Unchecked chronic ocular inflammation leads to retinal damage. Thus, retinal degenerative diseases that result in chronic inflammation accelerate retinal tissue destruction and vision loss.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) produced by sphingosine kinases (SPHK1 and SPHK2) is a signaling molecule involved in cell proliferation and formation of cellular junctions. In this study, we characterized the retinas of Sphk1 knockout (KO) mice by electron microscopy and immunocytochemistry. We also tested cultured Müller glia for their response to S1P.

View Article and Find Full Text PDF