Nuclear factor erythroid 2-related factor 2 (NRF2) is a pleiotropic transcription factor which regulates the constitutive and inducible transcription of a wide array of genes and confers protection against a variety of pathologies. Directly disrupting Kelch-like ECH-associated protein 1 (KEAP1)-NRF2 protein-protein interaction (PPI) has been explored as a promising strategy to activate NRF2. We reported here the first identification of a series of 2-oxy-2-phenylacetic acid substituted naphthalene sulfonamide derivatives as potent KEAP1-NRF2 inhibitors.
View Article and Find Full Text PDFReversibly altering endogenous protein levels are persistent issues. Herein, we designed photoswitchable azobenzene-proteolysis targeting chimeras (Azo-PROTACs) by including azobenzene moieties between ligands for the E3 ligase and the protein of interest. Azo-PROTACs are light-controlled small-molecule tools for protein knockdown in cells.
View Article and Find Full Text PDFThe transcription factor Nrf2 is a key regulator of cytoprotective system, and enhancing Nrf2 activity can protect cells from various insults and threats. Directly disrupting Keap1-Nrf2 protein-protein interactions has been regarded as a promising way to activate Nrf2. We reported here the first identification of amino acids as preferred substituents to design potent Keap1-Nrf2 inhibitors.
View Article and Find Full Text PDFThe Keap1-Nrf2-ARE pathway regulates the constitutive and inducible transcription of various genes that encode detoxification enzymes, antioxidant proteins and anti-inflammatory proteins and has pivotal roles in the defence against cellular oxidative stress. In this study, we investigated the therapeutic potential of CPUY192018, a potent small-molecule inhibitor of the Keap1-Nrf2 protein-protein interaction (PPI), in renal inflammation. In human proximal tubular epithelial HK-2 cells, CPUY192018 treatment significantly increased Nrf2 protein level and Nrf2 nuclear translocation, which enhanced Nrf2-ARE transcription capacity and the downstream protein content in a Nrf2 dependent manner.
View Article and Find Full Text PDFNuclear factor erythroid 2-related factor 2 (Nrf2) is a pleiotropic transcription factor, especially for its complex and dual effects in cancer. With the continuous growing research, new regulatory modes and new functions of Nrf2 and tumor-promoting effects of Nrf2 in malignant transformed tumors have become increasingly clear. Accumulating evidence has established that Nrf2 contributes to the whole process of pathogenesis, progression, metastasis, and prognosis of cancer, and Nrf2 could be a promising target in cancer therapy.
View Article and Find Full Text PDFDirectly disrupting Keap1-Nrf2 protein-protein interaction (PPI) has emerged as a novel way to activate Nrf2. Peptide Keap1-Nrf2 PPI inhibitors have been reported with high Keap1 binding affinity. However, these peptide inhibitors show weak activity in cells.
View Article and Find Full Text PDFThe transcription factor Nrf2 is the primary regulator of the cellular defense system, and enhancing Nrf2 activity has potential usages in various diseases, especially chronic age-related and inflammatory diseases. Recently, directly targeting Keap1-Nrf2 protein-protein interaction (PPI) has been an emerging strategy to selectively and effectively activate Nrf2. This Perspective summarizes the progress in the discovery and development of Keap1-Nrf2 PPI inhibitors, including the Keap1-Nrf2 regulatory mechanisms, biochemical techniques for inhibitor identification, and approaches for identifying peptide and small-molecule inhibitors, as well as discusses privileged structures and future directions for further development of Keap1-Nrf2 PPI inhibitors.
View Article and Find Full Text PDFACS Med Chem Lett
September 2016
Directly disrupting the Keap1-Nrf2 protein-protein interaction (PPI) has emerged as an attractive way to activate Nrf2, and Keap1-Nrf2 PPI inhibitors have been proposed as potential agents to relieve inflammatory and oxidative stress diseases. In this work, we investigated the diacetic moiety around the potent Keap1-Nrf2 PPI inhibitor DDO1018 (2), which was reported by our group previously. Exploration of bioisosteric replacements afforded the ditetrazole analog 7, which maintains the potent PPI inhibition activity (IC50 = 15.
View Article and Find Full Text PDFUlcerative colitis (UC) is a chronic relapsing-remitting form of inflammatory bowel disease (IBD) that increases the risk of colorectal cancer, the third most common malignancy in humans. Oxidative stress is a risk factor for the development of UC. The Keap1-Nrf2-ARE pathway is one of the most important defensive mechanisms against oxidative and/or electrophilic stresses.
View Article and Find Full Text PDFMed Res Rev
September 2016
The Keap1-Nrf2-ARE ((Kelch-like ECH-Associating protein 1) nuclear factor erythroid 2 related factor 2-antioxidant response element) pathway is one of the most important defense mechanisms against oxidative and/or electrophilic stresses, and it is closely associated with inflammatory diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and aging. In recent years, progress has been made in strategies aimed at modulating the Keap1-Nrf2-ARE pathway. The Nrf2 activator DMF (Dimethylfumarates) has been approved by the FDA as a new first-line oral drug to treat patients with relapsing forms of multiple sclerosis, while a phase 3 study of another promising candidate, CDDO-Me, was terminated for safety reasons.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) as drug targets have been gaining growing interest, though developing drug-like small molecule PPI inhibitors remains challenging. Peptide PPI inhibitors, which can provide informative data on the PPI interface, are good starting points to develop small molecule modulators. Computational methods combining molecular dynamics simulations and binding energy calculations could give both the structural and the energetic perspective of peptide PPI inhibitors.
View Article and Find Full Text PDFHeat-shock protein 90 (Hsp90) is highly expressed in many tumor cells and is associated with the maintenance of malignant phenotypes. Targeting Hsp90 has had therapeutic success in both solid and hematological malignancies, which has inspired more studies to identify new Hsp90 inhibitors with improved clinical efficacy. Using a fragment-based approach and subsequent structural optimization guided by medicinal chemistry principles, we identified the novel compound CPUY201112 as a potent Hsp90 inhibitor.
View Article and Find Full Text PDFDirectly disrupting the Keap1-Nrf2 protein-protein interaction (PPI) is an effective way to activate Nrf2. Using the potent Keap1-Nrf2 PPI inhibitor that was reported by our group, we conducted a preliminary investigation of the structure-activity and structure-property relationships of the ring systems to improve the drug-like properties. Compound 18e, which bore p-acetamido substituents on the side chain phenyl rings, was the best choice for balancing PPI inhibition activity, physicochemical properties, and cellular Nrf2 activity.
View Article and Find Full Text PDFInduction of phase II antioxidant enzymes by activation of Nrf2/ARE pathway has been recognized as a promising strategy for the regulation of oxidative stress-related diseases. Herein we report our effort on the discovery and optimization of Nrf2 activators with 1,2,4-oxadiazole core. Screening of an in-house collection containing 7500 compounds by ARE-luciferase reporter assay revealed a moderate Nrf2 activator, 1.
View Article and Find Full Text PDFE3 ubiquitin ligases are attractive drug targets due to their specificity to the ubiquitin machinery. However, the development of E3 ligase inhibitors has proven challenging for the fact that they must disrupt protein-protein interactions (PPIs). The E3 ligase involved in interactome provide new hope for the discovery of the E3 ligase inhibitors.
View Article and Find Full Text PDFNF-κB essential modulator (NEMO), the non-catalytic regulatory subunit of the IκB kinase (IKK) complex, is essential for the canonical NF-κB activation pathway. It has been identified as a molecular platform for assembling the IKK complex and recruiting upstream IKK activators. However, the exact mechanism for regulating IKK activity has still remained elusive.
View Article and Find Full Text PDFKeap1 is known to mediate the ubiquitination of Nrf2, a master regulator of the antioxidant response. Directly interrupting the Keap1-Nrf2 interaction has been emerged as a promising strategy to develop novel class of antioxidant, antiinflammatory, and anticancer agents. On the basis of the molecular binding determinants analysis of Keap1, we successfully designed and characterized the most potent protein-protein interaction (PPI) inhibitor of Keap1-Nrf2, compound 2, with K(D) value of 3.
View Article and Find Full Text PDFProtein-protein interactions (PPIs) play a crucial role in cellular function and form the backbone of almost all biochemical processes. In recent years, protein-protein interaction inhibitors (PPIIs) have represented a treasure trove of potential new drug targets. Unfortunately, there are few successful drugs of PPIIs on the market.
View Article and Find Full Text PDFHeat shock protein 90 (Hsp90), whose inhibitors have shown promising activity in clinical trials, is an attractive anticancer target. In this work, we first explored the significant pharmacophore features needed for Hsp90 inhibitors by generating a 3D-QSAR pharmacophore model. It was then used to virtually screen the SPECS databases, identifying 17 hits.
View Article and Find Full Text PDF