The NLRP3 (NOD-like receptor family, pyrin domain-containing protein 3) inflammasome, a multiprotein complex, plays a crucial role in triggering the release of pro-inflammatory cytokines like interleukin-1 beta. Abnormal activation of NLRP3 can mediate an aberrant immune response to viral infections and is associated with inflammatory diseases. In this study, the goal was to identify bioactive, potent, and specific inhibitors of NLRP3 that could modulate the inflammasome pathway and assess their potential therapeutic relevance.
View Article and Find Full Text PDFPyruvate dehydrogenase kinases (PDHKs) are non-canonical serine/threonine kinases that regulate the pyruvate dehydrogenase complex. Given their central role in metabolism, dysregulation of PDHKs has been linked with a broad variety of pathological conditions, such as cardiovascular disease, diabetes, lactic acidosis, and cancer. While there are many small molecule PDHK inhibitors, including several that have advanced into clinical development, no PDHK inhibitor has been approved for therapeutic use for any indication.
View Article and Find Full Text PDFSmall molecule degraders such as PROteolysis TArgeting Chimeras (PROTACs) and molecular glues are new modalities for drug development and important tools for target validation. When appropriately optimized, both modalities lead to proteasomal degradation of the protein of interest (POI). Due to the complexity of the induced multistep degradation process, controls for degrader evaluation are critical and commonly used in the literature.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Activin receptor type 1 (ACVR1; ALK2) and activin receptor like type 1 (ACVRL1; ALK1) are transforming growth factor beta family receptors that integrate extracellular signals of bone morphogenic proteins (BMPs) and activins into Mothers Against Decapentaplegic homolog 1/5 (SMAD1/SMAD5) signaling complexes. Several activating mutations in ALK2 are implicated in fibrodysplasia ossificans progressiva (FOP), diffuse intrinsic pontine gliomas, and ependymomas. The ALK2 R206H mutation is also present in a subset of endometrial tumors, melanomas, non-small lung cancers, and colorectal cancers, and ALK2 expression is elevated in pancreatic cancer.
View Article and Find Full Text PDFInvestigating ligand-protein complexes is essential in the areas of chemical biology and drug discovery. However, detailed information on key reagents such as fluorescent tracers and associated data for the development of widely used bioluminescence resonance energy transfer (BRET) assays including NanoBRET, time-resolved Förster resonance energy transfer (TR-FRET) and fluorescence polarization (FP) assays are not easily accessible to the research community. We created tracerDB, a curated database of validated tracers.
View Article and Find Full Text PDFSpleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase that is activated by phosphorylation events downstream of FcR, B-cell and T-cell receptors, integrins, and C-type lectin receptors. When the tandem Src homology 2 (SH2) domains of SYK bind to phosphorylated immunoreceptor tyrosine-based activation motifs (pITAMs) contained within these immunoreceptors, or when SYK is phosphorylated in interdomain regions A and B, SYK is activated. SYK gain-of-function (GoF) variants were previously identified in six patients that had higher levels of phosphorylated SYK and phosphorylated downstream proteins JNK and ERK.
View Article and Find Full Text PDFMen or mice with homozygous serine/threonine kinase 33 () mutations are sterile owing to defective sperm morphology and motility. To chemically evaluate STK33 for male contraception with STK33-specific inhibitors, we screened our multibillion-compound collection of DNA-encoded chemical libraries, uncovered potent STK33-specific inhibitors, determined the STK33 kinase domain structure bound with a truncated hit CDD-2211, and generated an optimized hit CDD-2807 that demonstrates nanomolar cellular potency (half-maximal inhibitory concentration = 9.2 nanomolar) and favorable metabolic stability.
View Article and Find Full Text PDFMethods Mol Biol
April 2024
Dysfunction of the RAS/mitogen-activated protein kinase (MAPK) pathway is a common driver of human cancers. As such, both the master regulator of the pathway, RAS, and its proximal kinase effectors, RAFs, have been of interest as drug targets for decades. Importantly, signaling within the RAS/MAPK pathway is highly coordinated due to the formation of a higher-order complex called the RAS/RAF signalosome, which may minimally contain dimers of both RAS and RAF protomers.
View Article and Find Full Text PDFProstate cancer is a frequent malignancy in older men and has a very high 5-year survival rate if diagnosed early. The prognosis is much less promising if the tumor has already spread outside the prostate gland. Targeted treatments mainly aim at blocking androgen receptor (AR) signaling and initially show good efficacy.
View Article and Find Full Text PDFAs a key regulator of the innate immune system, the NLRP3 inflammasome responds to a variety of environmental insults through activation of caspase-1 and release of the proinflammatory cytokines IL-1β and IL-18. Aberrant NLRP3 inflammasome function is implicated in numerous inflammatory diseases, spurring drug discovery efforts at NLRP3 as a therapeutic target. A diverse array of small molecules is undergoing preclinical/clinical evaluation with a reported mode of action involving direct modulation of the NLRP3 pathway.
View Article and Find Full Text PDFCell Chem Biol
November 2023
RAF dimer inhibitors offer therapeutic potential in RAF- and RAS-driven cancers. The utility of such drugs is predicated on their capacity to occupy both RAF protomers in the RAS-RAF signaling complex. Here we describe a method to conditionally quantify drug-target occupancy at selected RAF protomers within an active RAS-RAF complex in cells.
View Article and Find Full Text PDFKinases represent one of the most therapeutically tractable targets for drug discovery in the twenty-first century. However, confirming engagement and achieving intracellular kinase selectivity for small-molecule kinase inhibitors can represent noteworthy challenges. The NanoBRET platform enables broad-spectrum live-cell kinase selectivity profiling in most laboratory settings, without advanced instrumentation or expertise.
View Article and Find Full Text PDFCell Chem Biol
August 2023
DNA-encoded libraries (DELs) provide unmatched chemical diversity and starting points for novel drug modalities. Here, we describe a workflow that exploits the bifunctional attributes of DEL ligands as a platform to generate BRET probes for live cell target engagement studies. To establish proof of concept, we performed a DEL screen using aurora kinase A and successfully converted aurora DEL ligands as cell-active BRET probes.
View Article and Find Full Text PDFPLK1 is a protein kinase that regulates mitosis and is both an important oncology drug target and a potential antitarget of drugs for the DNA damage response pathway or anti-infective host kinases. To expand the range of live cell NanoBRET target engagement assays to include PLK1, we developed an energy transfer probe based on the anilino-tetrahydropteridine chemotype found in several selective PLK inhibitors. Probe was used to configure NanoBRET target engagement assays for PLK1, PLK2, and PLK3 and measure the potency of several known PLK inhibitors.
View Article and Find Full Text PDFPLK1 is a protein kinase that regulates mitosis and is both an important oncology drug target and a potential anti target of drugs for the DNA damage response pathway or anti-infective host kinases. To expand the range of live cell NanoBRET target engagement assays to include PLK1 we developed an energy transfer probe based on the anilino-tetrahydropteridine chemotype found in several selective PLK inhibitors. Probe 11 was used to configure NanoBRET target engagement assays for PLK1, PLK2, and PLK3 and measure the potency of several known PLK inhibitors.
View Article and Find Full Text PDFNat Chem Biol
February 2023
Small-molecule tools have enabled mechanistic investigations and therapeutic targeting of the protein kinase-like (PKL) superfamily. However, such tools are still lacking for many PKL members, including the highly conserved and disease-related UbiB family. Here, we sought to develop and characterize an inhibitor for the archetypal UbiB member COQ8, whose function is essential for coenzyme Q (CoQ) biosynthesis.
View Article and Find Full Text PDFE3 ligases constitute a large and diverse family of proteins that play a central role in regulating protein homeostasis by recruiting substrate proteins recruitment domains to the proteasomal degradation machinery. Small molecules can either inhibit, modulate or hijack E3 function. The latter class of small molecules led to the development of selective protein degraders, such as PROTACs (PROteolysis TArgeting Chimeras), that recruit protein targets to the ubiquitin system leading to a new class of pharmacologically active drugs and to new therapeutic options.
View Article and Find Full Text PDFCyclin-dependent kinases (CDK) are attractive targets for drug discovery due to their wide range of cellular functions. CDK11 is an understudied CDK with roles in transcription and splicing, cell cycle regulation, neuronal function, and apoptosis. In this study, we describe a medicinal chemistry campaign to identify a CDK11 inhibitor.
View Article and Find Full Text PDFCurrent small-molecule inhibitors of KRAS(G12C) bind irreversibly in the switch-II pocket (SII-P), exploiting the strong nucleophilicity of the acquired cysteine as well as the preponderance of the GDP-bound form of this mutant. Nevertheless, many oncogenic KRAS mutants lack these two features, and it remains unknown whether targeting the SII-P is a practical therapeutic approach for KRAS mutants beyond G12C. Here we use NMR spectroscopy and a cellular KRAS engagement assay to address this question by examining a collection of SII-P ligands from the literature and from our own laboratory.
View Article and Find Full Text PDFImatinib, a selective inhibitor of the breakpoint cluster region (BCR)-ABL kinase, is the poster child for targeted cancer therapeutics. However, its efficacy is limited by resistance mutations. Using a quantitative bioluminescence resonance energy transfer assay in living cells, we identified ABL kinase mutations that could cause imatinib resistance by altering drug residence time.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2021
Protein kinase inhibitors are potent anticancer therapeutics. For example, the Bcr-Abl kinase inhibitor imatinib decreases mortality for chronic myeloid leukemia by 80%, but 22 to 41% of patients acquire resistance to imatinib. About 70% of relapsed patients harbor mutations in the Bcr-Abl kinase domain, where more than a hundred different mutations have been identified.
View Article and Find Full Text PDFThis protocol is used to profile the engagement of kinase inhibitors across nearly 200 kinases in a live-cell context. This protocol utilizes one single kinase tracer (NanoBRET(TM) Tracer K10) that operates quantitatively at four different concentrations. Minimizing the number of tracers offers a significant workflow improvement over the previous protocol that utilized a combination of 6 tracers.
View Article and Find Full Text PDFTarget engagement and cell permeation are important parameters that may limit the efficacy of proteolysis-targeting chimeras (PROTACs). Here, we present an approach that facilitates both the quantitation of PROTAC binding affinity for an E3 ligase of interest, as well as the assessment of relative intracellular availability. We present a panel of E3 ligase target engagement assays based upon the NanoBRET Target Engagement platform.
View Article and Find Full Text PDF